【题目】已知点,椭圆的离心率为,是椭圆的右焦点,直线的斜率为,为坐标原点.
(1)求的方程;
(2)设过点的动直线与相交于两点,问:是否存在直线,使以为直径的圆经过原点,若存在,求出对应直线的方程,若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,以椭圆的一个短轴端点及两个焦点构成的三角形的面积为,圆C方程为.
(1)求椭圆及圆C的方程;
(2)过原点O作直线l与圆C交于A,B两点,若,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左、右焦点分别为, ,点在椭圆上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在斜率为2的直线,使得当直线与椭圆有两个不同交点、时,能在直线上找到一点,在椭圆上找到一点,满足?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分
沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时。如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).
(1)如果该沙漏每秒钟漏下0.02cm3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?
(2)细沙全部漏入下部后,恰好堆成个一盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到0.1cm).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
组号 | 第一组 | 第二组 | 第三组 | 第四组 | 第五组 |
分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线().
(1)证明:直线过定点;
(2)若直线不经过第四象限,求的取值范围;
(3)若直线轴负半轴于,交轴正半轴于,△的面积为(为坐标原点),求的最小值,并求此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,圆的方程为.
(Ⅰ)写出直线的普通方程和圆的直角坐标方程;
(Ⅱ)若点的直角坐标为,圆与直线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空间中任意放置的棱长为2的正四面体.下列命题正确的是_________.(写出所有正确的命题的编号)
①正四面体的主视图面积可能是;
②正四面体的主视图面积可能是;
③正四面体的主视图面积可能是;
④正四面体的主视图面积可能是2
⑤正四面体的主视图面积可能是.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com