精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
二次函数.
(1)若对任意恒成立,求实数的取值范围;
(2)讨论函数在区间上的单调性;
(3)若对任意的恒成立,求实数的取值范围.
(1);(2)①当时,在区间上单调递增;
②当时,在区间上单调递减,在区间上单调递增;
③当时,在区间上单调递增.(3)

试题分析:(1)对任意恒成立      …………1分
…………2分    解得的范围是 …………3分
(2),其图象是开口向上的抛物线,对称轴方程为,……4分
讨论:①当时,在区间上单调递增;
②当时,在区间上单调递减,在区间上单调递增;
③当时,在区间上单调递增.     ……………8分
(3)由题知,       ………9分
   由(2),
    ………………12分
解得                           ……………14分
点评:若恒成立;若恒成立。此题中没有限制二次项系数不为零,所以不要忘记讨论。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知x1、x2是关于x的一元二次方程x2+(3a-1)x+2a2-1=0的两个实数根,使得
(3x1-x2)(x1-3x2)=-80成立.求实数a的所有可能值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数.
(Ⅰ)若为偶函数,求的值;
(Ⅱ)若上有最小值9,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)
已知二次函数满足:,且
解集为
(1)求的解析式;
(2)设,若上的最小值为-4,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知
1)若,求方程的解;
2)若对上有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的增区间是(   )
A.(,2]B.[2, )C.(,3]D.[3, )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知二次函数的图象过点(0,—3),且的解集(1,3)。
(1)求的解析式;
(2)若当时,恒有求实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则的解集为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

二次函数的图象如图所示,是图象上的一点,且,则的值为:
A.-2B.-1C.D.

查看答案和解析>>

同步练习册答案