精英家教网 > 高中数学 > 题目详情
数列{an}中,an+1+an=3n-54(n∈N*).
(1)若a1=-20,求{an}的通项公式an
(2)设Sn为{an}的前n项和,当a1>-27时,求Sn的最小值.
分析:(1)利用题设递推式表示出an+2+an+1,两式相减求得an+2-an为常数,进而判断出a1,a3,a5,与a2,a4,a6,都是d=3的等差数列,进而分别看n为奇数和偶数时利用叠加法和等差数列求和公式求得答案.
(2)分别看n为奇数和偶数时表示出Sn,利用二次函数的性质分别求得其最小值,最后综合可得答案.
解答:解:(1)∵
an+1+an=3n-54
an+2+an+1=3n-51
,两式相减得an+2-an=3,
∴a1,a3,a5,…,与a2,a4,a6,…都是d=3的等差数列
∵a1=-20
∴a2=-31,
①当n为奇数时,an=-20+(
n+1
2
-1)×3=
3n-43
2

②当n为偶数时,an=-31+(
n
2
-1)×3=
3n-68
2

(2)①当n为偶数时,Sn=(a1+a2)+(a3+a4)++(an-1+an
=(3×1-54)+(3×3-54)++[3(n-1)-54]=3[1+3+5++(n-1)]-
n
2
×54=
3
4
n2-27n=
3
4
(n-18)2
-243,
∴当n=18时,(Snmin=-243;
②当n为奇数时,Sn=a1+(a2+a3)++(an-1+an)=
3
4
n2-27n+
105
4
+a1=
3
4
(n-18)2-216
3
4
+a1

∴当n=17或19时(Snmin=a1-216>-243;综上,当n=18时(Snmin=-243.
点评:本题主要考查了数列的求和问题,求数列的通项公式,以及数列与函数思想的综合.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,如果对任意n∈N+都有
an+2-an+1an+1-an
=p(p为常数),则称数列{an}为“等差比”数列,p叫数列{an}的“公差比”.现给出如下命题:
(1)等差比数列{an}的公差比p一定不为零;
(2)若数列{an}(n∈N+)是等比数列,则数列{an}一定是等差比数列;
(3)若等比数列{an}是等差比数列,则等比数列{an}的公比与公差比相等.
则正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南京一模)已知函数f(x)=2+
1
x
.数列{an}中,a1=a,an+1=f(an)(n∈N*).当a取不同的值时,得到不同的数列{an},如当a=1时,得到无穷数列1,3,
7
3
17
7
,…;当a=-
1
2
时,得到有穷数列-
1
2
,0.
(1)求a的值,使得a3=0;
(2)设数列{bn}满足b1=-
1
2
bn=f(bn+1)(n∈N*)
,求证:不论a取{bn}中的任何数,都可以得到一个有穷数列{an};
(3)求a的取值范围,使得当n≥2时,都有
7
3
an
<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)数列{an}中,a1=
5
7
an+1=2-
1
an
(n∈N*)
;数列{bn}满足bn=
1
an-1
(n∈N*)

(I)求证:数列{bn}是等差数列,并求出{an}的通项公式an
(Ⅱ)求{an}中最大项与最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

关于数列有下列四个判断:
①若a,b,c,d成等比数列,则a+b,b+c,c+d也成等比数列;
②若数列{an}是等比数列,则Sn,S2n-Sn,S3n-S2n…也成等比数列;
③若数列{an}既是等差数列也是等比数列,则{an}为常数列;
④数列{an}的前n项的和为Sn,且数学公式,则{an}为等差或等比数列;
⑤数列{an}为等差数列,且公差不为零,则数列{an}中不会有am=an(m≠n).
其中正确命题的序号是________.(请将正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,如果存在非零常数T使得an=an+T对于任意非零自然数n均成立,那么就称数列{an}为周期数列,其中T叫做数列{an}的周期,已知数列{an}满足an+1=|anan1|(n≥2,n∈N),如果a1=1,a2=a(a∈R,a≠0),当数列{an}的周期最小时,该数列前2005项的和是                                                  

A.668                     B.669                    C.1336                  D.1337

查看答案和解析>>

同步练习册答案