精英家教网 > 高中数学 > 题目详情
(2012•安徽)设定义在(0,+∞)上的函数f(x)=ax+
1
ax
+b(a>0)
(Ⅰ)求f(x)的最小值;
(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=
3
2
x
,求a,b的值.
分析:(Ⅰ)根据a>0,x>0,利用基本不等式,可求f(x)的最小值;
(Ⅱ)根据曲线y=f(x)在点(1,f(1))处的切线方程为y=
3
2
x
,建立方程组,即可求得a,b的值.
解答:解:(Ⅰ)f(x)=ax+
1
ax
+b≥2
ax•
1
ax
+b=b+2
当且仅当ax=1(x=
1
a
)时,f(x)的最小值为b+2
(Ⅱ)由题意,曲线y=f(x)在点(1,f(1))处的切线方程为y=
3
2
x
,可得:
f(1)=
3
2
,∴a+
1
a
+b=
3
2

f'(x)=a-
1
ax2
,∴f′(1)=a-
1
a
=
3
2

由①②得:a=2,b=-1
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及基本不等式的应用,同时考查了计算能力和分析问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽)设集合A={x|-3≤2x-1≤3},集合B为函数y=lg(x-1)的定义域,则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.
(Ⅰ)求角A的大小;
(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽)设向量
a
=(1,2m),
b
=(m+1,1),
c
=(2,m),若(
a
+
c
)⊥
b
,则|
a
|=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽)设平面α与平面β相交于直线m,直线a在平面α内.直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽)设函数f(x)=
x2
+sinx的所有正的极小值点从小到大排成的数列为{xn}.
(Ⅰ)求数列{xn}.
(Ⅱ)设{xn}的前n项和为Sn,求sinSn

查看答案和解析>>

同步练习册答案