精英家教网 > 高中数学 > 题目详情
13.变量x,y之间的一组相关数据如表所示:
x4567
y8.27.86.65.4
若x,y之间的线性回归方程为$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+12.28,则$\stackrel{∧}{b}$的值为(  )
A.-0.96B.-0.94C.-0.92D.-0.98

分析 求出样本的中心点,代入回归方程求出$\stackrel{∧}{b}$的值即可.

解答 解:由题意得:$\overline{x}$=5.5,$\overline{y}$=7,
故样本中心点是(5.5,7),
故7=5.5$\stackrel{∧}{b}$+12.28,解得:$\stackrel{∧}{b}$=-0.96,
故选A

点评 本题考查线性回归方程的性质,本题解题的关键是根据所给的条件求出直线的样本中心点,线性回归方程一定过样本中心点是本题解题的依据,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sinx-ax.
(Ⅰ)对于x∈(0,1),f'(x)>0恒成立,求实数a的取值范围;
(Ⅱ)当a=1时,令h(x)=f(x)-sinx+lnx+1,求h(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的偶函数f(x)满足f(x+4)=f(x),且当0≤x≤2时,f(x)=min{-x2+2x,2-x},若方程f(x)-mx=0恰有两个根,则m的取值范围是(  )
A.(-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)B.[-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)C.(-2,-$\frac{1}{3}$)∪($\frac{1}{3}$,2)D.[-2,-$\frac{1}{3}$]∪[$\frac{1}{3}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,已知角A,B,C的对边分别为a,b,c.若a=2,A=30°,C=45°,则△ABC的面积为(  )
A.$\sqrt{2}$B.$\sqrt{3}$+1C.$\frac{1}{2}$($\sqrt{3}$+1)D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个无穷数列的前三项是1,2,3,下列不可以作为其通项公式的是(  )
A.an=nB.an=n3-6n2+12n-6C.an=$\frac{1}{2}$n2-$\frac{1}{2}$n+1D.an=$\frac{6}{{n}^{2}-6n+11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.(x-$\frac{1}{x}$)6的展开式中,系数最大的项为第第三、第五项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,|$\overrightarrow{AB}$|=2.|$\overrightarrow{AC}$|=1,点D是BC的中点.

(1)求证:$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$);
(2)直线l过点D且垂直于BC,E为l上任意一点,求证:$\overrightarrow{AE}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)为常数,并求出该常数;
(3)如图2,若cosA=$\frac{3}{4}$,F为线段AD上的任意一点,求$\overrightarrow{AF}$•($\overrightarrow{FB}$+$\overrightarrow{FC}$)的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a,b,c是互不相等的非零实数,若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+c=0至少有一个方程有两个相异实根,反证假设应为(  )
A.三个方程中至多有一个方程有两个相异实根
B.三个方程都有两个相异实根
C.三个方程都没有两个相异实根
D.三个方程都没有实根

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知角α的终边过点P(-5,12),则sinα+cosα=(  )
A.$\frac{4}{13}$B.$-\frac{4}{13}$C.$\frac{7}{13}$D.$-\frac{7}{13}$

查看答案和解析>>

同步练习册答案