A. | -45 | B. | 13 | C. | -13 | D. | -37 |
分析 先用$\overrightarrow{AB}$和$\overrightarrow{AC}$表示出$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\overrightarrow{AB}•\overrightarrow{AC}-{\overrightarrow{AB}}^{2}$,再根据$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$用$\overrightarrow{AB}$和$\overrightarrow{AC}$表示出$\overrightarrow{AD}$,再根据$\overrightarrow{AD}$•$\overrightarrow{AC}$=4求出$\overrightarrow{AB}•\overrightarrow{AC}$的值,最后将$\overrightarrow{AB}•\overrightarrow{AC}$的值代入$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\overrightarrow{AB}•\overrightarrow{AC}-{\overrightarrow{AB}}^{2}$,从而得出答案.
解答 解:$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\overrightarrow{AB}•(\overrightarrow{AC}-\overrightarrow{AB})$=$\overrightarrow{AB}•\overrightarrow{AC}-{\overrightarrow{AB}}^{2}$
∵$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$,
∴$\overrightarrow{AD}-\overrightarrow{AB}$=$\frac{1}{2}$($\overrightarrow{AC}$-$\overrightarrow{AD}$)
$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{AC}$-$\frac{1}{2}$$\overrightarrow{AD}$+$\overrightarrow{AB}$
整理可得:$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AC}+\frac{2}{3}\overrightarrow{AB}$
∴$\overrightarrow{AD}•\overrightarrow{AC}=\frac{2}{3}\overrightarrow{AB}•\overrightarrow{AC}+\frac{1}{3}{\overrightarrow{AC}}^{2}$=4
∴$\overrightarrow{AB}•\overrightarrow{AC}$=-12
∴$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\overrightarrow{AB}•(\overrightarrow{AC}-\overrightarrow{AB})$=$\overrightarrow{AB}•\overrightarrow{AC}-{\overrightarrow{AB}}^{2}$=-12-25=-37.
故选:D.
点评 本题考查了平面向量数量积的运算,注意运用平面向量的基本定理,以及向量的数量积的性质,考查了运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | [0,$\frac{3π}{4}$] | B. | [0,$\frac{π}{4}$] | C. | [0,$\frac{π}{4}$]∪($\frac{π}{2}$,$\frac{3π}{4}$] | D. | [$\frac{π}{4}$,$\frac{π}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{3}}}{2}$ | B. | -$\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 甲一定在画画 | B. | 甲一定在听音乐 | C. | 乙一定不看书 | D. | 丙一定不画画 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com