精英家教网 > 高中数学 > 题目详情
已知平面和直线,给出条件:①;②;③;④;⑤.
由这五个条件中的两个同时成立能推导出的是(   )
A.①④B.①⑤C.②⑤D.③⑤
D

试题分析:对于A选项,若,则的位置关系不确定,A选项错误;对于B选项,若,则,B选项也不正确;对于C选项,若,则,C选项也错误;对于D选项,若,则直线与平面无公共点,故D选项正确,故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面为矩形,平面的中点.
(1)证明://平面
(2)设,三棱锥的体积,求到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1.
(1)设平面ABE与平面ACD的交线为直线,求证:∥平面BCDE;
(2)设F是BC的中点,求证:平面AFD⊥平面AFE;
(3)求几何体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)(2011•广东)如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的,A,A′,B,B′分别为的中点,O1,O1′,O2,O2′分别为CD,C′D′,DE,D′E′的中点.

(1)证明:O1′,A′,O2,B四点共面;
(2)设G为A A′中点,延长A′O1′到H′,使得O1′H′=A′O1′.证明:BO2′⊥平面H′B′G

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图1,直角梯形中, 四边形是正方形,,.将正方形沿折起,得到如图2所示的多面体,其中面,中点.
(1) 证明:∥平面
(2) 求三棱锥的体积.
     
图1                     图2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.
请对上面定理加以证明,并说出定理的名称及作用.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱柱中,侧棱底面,底面三角形是正三角形,中点,则下列叙述正确的是(    )
A.是异面直线
B.平面
C.为异面直线,且
D.平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知空间四边形ABCD中,AB=CD=3,E、F分别是BC、AD上的点,并且BE∶EC=AF∶FD=1∶2,EF=,求AB和CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,三角形ABC是直角三角形,ACB=,PA平面ABC,
此图形中有____________个直角三角形.

查看答案和解析>>

同步练习册答案