精英家教网 > 高中数学 > 题目详情

【题目】设数列n项和为,且其中m为实常数, .

1)求证:是等比数列;

2)若数列的公比满足,求证:数列 是等差数列,并求的通项公式;

3)若时,设,求数列的前n.

【答案】1)证明见解析(2)证明见解析,3

【解析】

1)根据所给的关系式,仿写一个关系式,两式相减得到连续两项的比值等于常数,故得结果;

2)根据求出的值,再根据题意得到关于数列的表达式,两边除以可证为等差数列,求出新数列的表达式,进而求出数列的表达式;

3)将代入可得的通项公式,利用错位相减法求结果即可.

1)由,得

两式相减得

.,解出

是以1为首项,为公比的等比数列.

2)由,解出,∴.

时,

,推出.

是以1为首项,为公差的等差数列.

,∴.

3)若,则,所以,又

.

.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为

求曲线C的直角坐标方程与直线l的极坐标方程;

若直线与曲线C交于点不同于原点,与直线l交于点B,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调区间;

2)当,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全民健身倡导全民做到每天参加一次以上的体育健身活动,旨在全面提高国民体质和健康水平.某部门在该市2013-2018年发布的全民健身指数中,对其中的“运动参与评分值”(满分100分)进行了统计,制成如图所示的散点图.

(1)根据散点图,建立关于的回归方程

(2)从该市的市民中随机抽取了容量为150的样本,其中经常参加体育锻炼的人数为50,以频率为概率,若从这150名市民中随机抽取4人,记其中“经常参加体育锻炼”的人数为,求的分布列和数学期望.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面中点,底面是直角梯形,.

1)求证:平面

2)设为棱上一点,,试确定的值使得二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,是边长为2的正三角形,的中点,的中点.

(1)证明:平面

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,短轴的一个端点到焦点的距离为.

(1)求椭圆的方程;

(2)是椭圆上的两点,线段的中点在直线上,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列4个命题:

①若函数上有零点,则一定有

②函数既不是奇函数又不是偶函数;

③若函数的值域为,则实数的取值范围是

④若函数满足条件,则的最小值为.

其中正确命题的序号是:_______.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的内角ABC所对边分别为abc,且2acosC=2b-c

1)求角A的大小;

2)若AB=3AC边上的中线SD的长为,求ABC的面积.

查看答案和解析>>

同步练习册答案