精英家教网 > 高中数学 > 题目详情

已知双曲线E以抛物线Cy2=4(x-1)的顶点为右顶点,以C的焦点为右焦点,以原点O为中心.

(Ⅰ)求双曲线E的方程;

(Ⅱ)若AB是双曲线E经过原点O的弦,MN是经过焦点且平行于MN的弦,求证:为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线E的离心率为e,左、右两焦点分别为F1、F2,抛物线C以F2为顶点,F1为焦点,点P为抛物线与双曲线右支上的一个交点,若a|PF2|+c|PF1|=8a2,则e的值为(  )
A、
3
B、3
C、
2
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线E:
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率为e,左、右两焦点分别为F1、F2,焦距为2c,抛物线C以F2为顶点,F1为焦点,点P为抛物线与双曲线右支上的一个交点,若a|PF2|+c|PF1|=8a2,则e的值为(  )
A、
3
B、3
C、
2
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,右顶点为A,离心率e=
1
2

(1)设抛物线C2:y2=4x的准线与x轴交于F1,求椭圆的方程;
(2)设已知双曲线C3以椭圆C1的焦点为顶点,顶点为焦点,b是双曲线C3在第一象限上任意-点,问是否存在常数λ(λ>0),使∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线E的离心率为e,左、右两焦点分别为F1F2,抛物线CF2为顶点,F1为焦点,点P为抛物线与双曲线右支上的一个交点,若a|PF2|+c|PF1|=8a 2(其中a、c分别为双曲线的实半轴长和半焦距),则e的值为  (    )学科网

A.               B. 3              C.             D. 学科网

查看答案和解析>>

同步练习册答案