精英家教网 > 高中数学 > 题目详情
设函数=x(x-1)(x-a)(a>1),

       (1)求导数,并证明有两个不同的极值点x1x2;

       (2)若不等式f(x1)+f(x2)≤0成立,求a的取值范围.

      

解析:(1) =3x2-2(1+a)x+a,?

       令=0得方程3x2-2(1+a)x+a=0,Δ=4(a2-a+1)≥4a>0,故方程有两不同实根x1x2.

       不妨设x1<x2,由=3(x-x1)(x-x2),可判别f′(x)符号如下:当x<x1时,f′(x)>0;当x1<x<x2时,<0;当x>x2时,f′(x)>0.?

       因此x1是极大值点,x2是极小值点.?

       (2)因f(x1)+f(x2)≤0,故不等式x13+x23-(1+a)(x12+x22)+a(x1+x2)≤0,即(x1+x2)[(x1+x2)2-3x1x2]-(1+a)[(x1+x2)2-2x1x2]+a(x1+x2)≤0.?

       又由(1)知?

       代入前面不等式两边除以(1+a),并化简得2a2-5a+2≥0.?

       解不等式得a≥2或a(舍).?

       因此当a≥2时不等式f(x1)+f(x2)≤0成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=|1-
1x
|,x>0

(1)证明:当0<a<b,且f(a)=f(b)时,ab>1;
(2)点P (x0,y0) (0<x0<1 )在曲线y=f(x)上,求曲线在点P处的切线与x轴和y轴的正向所围成的三角形面积表达式(用x0表达).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-2(-1)klnx(k∈N+).
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)设函数g(x)=2bx-
1
x2
在(0,1]上是增函数,且对于(0,1]内的任意实数x1,x2当k为偶数时,恒有f(x1)≥g(x2)成立,求实数b的取值范围;
(Ⅲ)当k是偶数时,函数h(x)=f′(x)-x+
3
x
,求证:[h(x)]n+2≥h(xn)+2n(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

h(x)=x+
m
x
x∈[
1
4
,5]
,其中m是不等于零的常数,
(1)(理)写出h(4x)的定义域;
(文)m=1时,直接写出h(x)的值域;
(2)(文、理)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函数f(x)在D上的最小值,maxf(x)|x∈D表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)当m=1时,设M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范围;
(文)当m=1时,|h1(x)-h2(x)|≤n恒成立,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=ax3+bx2+cx+d的图象与y轴交点为P,且曲线在P点处的切线方程为24x+y-12=0,若函数在x=2处取得极值为-16.
(1)求函数解析式;
(2)确定函数的单调递增区间;
(3)证明:当x∈(-∞,0)时,y<92.5.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数h使得对于任意x∈M(M⊆D),有x+h⊆D,且f(x+h)≥f(x),则称f(x)为M上的“h阶高调函数”.给出如下结论:
①若函数f(x)在R上单调递增,则存在非零实数h使f(x)为R上的“h阶高调函数”;
②若函数f(x)为R上的“h阶高调函数”,则f(x)在R上单调递增;
③若函数f(x)=x2为区间[-1,+∞)上的“h阶高诬蔑财函数”,则h≥2;
④若函数f(x)在R上的奇函数,且x≥0时,f(x)=|x-1|-1,则f(x)只能是R上的“4阶高调函数”.
其中正确结论的序号为(  )

查看答案和解析>>

同步练习册答案