【题目】设集合是非空集合的两个不同子集.
(1)若,且是的子集,求所有有序集合对的个数;
(2)若,且的元素个数比的元素个数少,求所有有序集合对的个数.
【答案】(1)5(2)
【解析】
(1)分集合含有2个元素或1个元素进行讨论分析,根据定义,利用列举法即可得到结果;(2)根据有序集合对的定义,
,利用二项式定理可得结果 .
(1)若集合B含有2个元素,即,
则A=,,则(A,B)的个数为3;
若集合B含有1个元素,则B有种,不妨设,则A=,
此时(A,B)的个数为×1=2.
综上,(A,B)的个数为5.
(2)集合M有子集,又集合A,B是非空集合M的两个不同子集,
则不同的有序集合对(A,B)的个数为,
若A的元素个数与B的元素个数一样多,则不同的有序集合对(A,B)的个数为
,
又的展开式中的系数为,
且的展开式中的系数为,,
,所以当A的元素个数与B的元素个数一样多时,
有序集合对(A,B)的个数为,
所以,A的元素个数比B的元素个数少时,有序集合对(A,B)的个数为
.
科目:高中数学 来源: 题型:
【题目】某旅行团按以下规定选择五个景区游玩:①若去,则去;②不能同时去;③都去,或者都不去;④去且只去一个;⑤若去,则要去和.那么,这个旅游团最多能去的景区为_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设二次函数满足下列条件:当时,的最小值为0,且成立;当时,恒成立.
(1)求的解析式;
(2)若对,不等式恒成立、求实数的取值范围;
(3)求最大的实数,使得存在实数,只要当时,就有成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是
A. y与x具有正的线性相关关系
B. 回归直线过样本点的中心(,)
C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg
D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,摩天轮的半径为40米,摩天轮的轴O点距离地面的高度为45米,摩天轮匀速逆时针旋转,每6分钟转一圈,摩天轮上点P的起始位置在最高点处,下面的有关结论正确的有( )
A.经过3分钟,点P首次到达最低点
B.第4分钟和第8分钟点P距离地面一样高
C.从第7分钟至第10分钟摩天轮上的点P距离地面的高度一直在降低
D.摩天轮在旋转一周的过程中有2分钟距离地面不低于65米
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:cm),经统计,其高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成如图所示的频率分布直方图.其中高度为27 cm及以上的树苗为优质树苗.
(1)求图中a的值;
(2)已知所抽取的这120棵树苗来自于A,B两个试验区,部分数据如下列联表:
A试验区 | B试验区 | 合计 | |
优质树苗 | 20 | ||
非优质树苗 | 60 | ||
合计 |
将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与A,B两个试验区有关系,并说明理由;
(3)用样本估计总体,若从这批树苗中随机抽取4棵,其中优质树苗的棵数为X,求X的分布列和数学期望EX.
下面的临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定椭圆C:(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为,且经过点(0,1).
(1)求实数a,b的值;
(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号.
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;
(下面摘取了第7行到第9行)
(2)抽取的100人的数学与地理的水平测试成绩如下表:成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有.
①若在该样本中,数学成绩优秀率是,求的值:
②在地理成绩及格的学生中,已知,求数学成绩优秀的人数比及格的人数少的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com