精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的公差是d,Sn是该数列的前n项和、
(1)试用d,Sm,Sn表示Sm+n,其中m,n均为正整数;
(2)利用(1)的结论求解:“已知Sm=Sn(m≠n),求Sm+n”;
(3)若各项均为正数的等比数列{bn}的公比为q,前n项和为Sn,试类比问题(1)的结论,写出一个相应的结论且给出证明,并利用此结论求解问题:“已知各项均为正数的等比数列{bn},其中S10=5,S20=15,求数列{bn}的前50项和S50.”
分析:(1)利用等差数列的前n项和公式分别表示出sn、sm、sm+n,找出其联系即可.
(2)由Sm=Sn可得mnd=-2sn,结合(1)的结论即可求解;
(3)利用类比法写出相应的结论,根据等比数列的通项公式和求和公式进行证明,然后将结论特殊化即可.
解答:解:(1)设等差数列{an}的首项是a1
∴Sn=na1+
n(n-1)
2
d,Sm=ma1+
m(m-1)
2
d,
∴Sm+n=(m+n)a1+
(m+n)(m+n-1)
2
d
=(m+n)a1+
m2+n2+2nm-m-n
2
d
=ma1+
m(m-1)
2
d+na1+
n(n-1)
2
d+mnd
=Sm+Sn+mnd;
(2)由条件,可得Sm=ma1+
m(m-1)
2
d①,Sn=na1+
n(n-1)
2
d②,
②×n-①×m得:
(m-n)sn=
1
2
nm(m-1)d-
1
2
mn(n-1)d,
整理得mnd=-2sn,,
则Sm+n=Sm+Sn+mnd=2sn-2sn=0.
(3)类比得到等比数列的结论是:若各项均为正数的等比数列{bn}的公比为q,前n项和为Sn,则对任意正整数m、n,都有sm+n=sm+qmsn
证明如下:不妨设m≤n,则sm+n=(b1+b2+…+bm)+(bm+1+bm+2+…+bn+m
=sm+(b1qm+b2qm+…+bnqm
=sm+qm(b1+b2+…+bn
=sm+qmsn
∴sm+n=sm+qmsn
问题解答如下:由s20=s10+10=s10+q10s10,得q10=
s20-s10
s10
=
15-5
5
=2,
则s30=s10+20=s10+q10s20=5+2×15=35,
∴s50=s20+30=s20+q20s30=15+22×35=155.
点评:本题考查了等差数列和等比数列的通项公式、前n项和公式及归纳类比的有关知识,考查运算能力和逻辑推理能力,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案