【题目】已知函数.
(1)若时,讨论函数的单调性;
(2)若函数在区间上恰有2个零点,求实数的取值范围.
【答案】(1)见解析;(2)
【解析】分析:(1)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)分三种情况讨论的范围,分别利用导数研究函数的单调性,结合零点存在定理与函数图象,可筛选出函数在区间上恰有2个零点的实数的取值范围.
详解:(1)
当时,,此时在单调递增;
当时,
①当时,,恒成立,,此时在
②当时,令
在和上单调递增;在上单调递减;
综上:当时,在单调递增;
当时,在和上单调递增;
在上单调递减;
(2)当时,由(1)知,在单调递增,,
此时在区间上有一个零点,不符;
当时,,在单调递增;,
此时在区间上有一个零点,不符;
当时,要使在内恰有两个零点,必须满足
在区间上恰有两个零点时,
科目:高中数学 来源: 题型:
【题目】(本小题10分) 从3名男生和名女生中任选2人参加比赛。
①求所选2人都是男生的概率;
②求所选2人恰有1名女生的概率;
③求所选2人中至少有1名女生的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某体育用品商场经营一批进价为40元的运动服,经市场调查发现销售量y(件)与销售单价x(元)符合一次函数模型,且销售单价为60元时,销量是600件;当销售单价为64元时,销量是560件.
(1)写出销售量y(件)与销售单价x(元)之间的函数关系式;
(2)试求销售利润z(元)与销售单价x(元)之间的函数关系式;
(3)在(1)(2)条件下,当销售单价为多少元时,商场能获得最大利润?并求出此最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以原点为极点,以轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线 的极坐标方程为:.
(I)若曲线,参数方程为:(为参数),求曲线的直角坐标方程和曲线的普通方程
(Ⅱ)若曲线,参数方程为 (为参数),,且曲线,与曲线交点分别为,求的取值范围,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线与直线交于不同两点分别过点、点作抛物线的切线,所得的两条切线相交于点.
(Ⅰ)求证为定值:
(Ⅱ)求的面积的最小值及此时的直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,半径为2的圆内有两条圆弧,一质点M自点A开始沿弧A-B-C-O-A-D-C做匀速运动,则其在水平方向(向右为正)的速度的图像大致为( )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com