2£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬¾­¹ýµã£¨$\sqrt{3}$£¬$\frac{1}{2}$£©£¬ÇÒÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬OΪ×ø±êÔ­µã£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÒÑ֪бÂÊ´æÔڵĶ¯Ö±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄµãA¡¢B£¬ÇÒ¡÷OABµÄÃæ»ýΪ1£¬ÈôPΪÏ߶ÎABµÄÖе㣬ÎÊ£ºÔÚxÖáÉÏÊÇ·ñ´æÔÚÁ½¸ö¶¨µãM¡¢N£¬Ê¹µÃÖ±ÏßPMÓëÖ±ÏßPNµÄбÂÊÖ®»ýΪ¶¨Öµ£¬Èô´æÔÚ£¬Çó³öM¡¢NµÄ×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©¸ù¾ÝµãµÄ×ø±êºÍÀëÐÄÂÊ£¬¼´¿ÉÇó³öÍÖÔ²µÄ·½³Ì£¬
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÉèÖ±Ïßl£ºy=kx+m£¬¹¹Ôì·½³Ì×飬ÏûÔª£¬¸ù¾ÝΤ´ï¶¨Àí£¬ºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°µãµ½Ö±ÏߵľàÀ빫ʽ£¬ÒÔ¼°Èý½ÇÐεÄÃæ»ý¹«Ê½£¬µÃµ½2|m|$\sqrt{1+4{k}^{2}-{m}^{2}}$=1+4k2£¬ÔÙ¸ù¾ÝÖеã×ø±ê¹«Ê½µÃµ½PµãµÄ×ø±ê£¬¼Ì¶øµÃµ½$\frac{1}{2}$xP2+2yP2=1£¬¼ÙÉè´æÔÚM£¨s£¬0£©£¬N£¨t£¬0£©£¬£¨s¡Ùt£©£¬ÔËÓÃбÂʹ«Ê½£¬¼ÆË㻯¼òÕûÀí£¬ÀûÓö¨ÖµË¼Ï룬¿ÉµÃs+t=0£¬st=-2£¬ÇóµÃs£¬t£¬½ø¶øµÃµ½¶¨Öµ£®

½â´ð ½â£º£¨¢ñ£©¡ße=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬
¡àe2=$\frac{{c}^{2}}{{a}^{2}}$=1-$\frac{{b}^{2}}{{a}^{2}}$=$\frac{3}{4}$£¬
¡àa2=4b2£¬¼´a=2b£¬
¡ß¾­¹ýµã£¨$\sqrt{3}$£¬$\frac{1}{2}$£©£¬
¡à$\frac{3}{{a}^{2}}+\frac{1}{4{b}^{2}}$=1£¬
½âµÃa=2£¬b=1£¬
¡à$\frac{{x}^{2}}{4}$+y2=1£»
£¨II£©½â£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÉèÖ±Ïßl£ºy=kx+m£¬
ÁªÁ¢·½³Ì×飬µÃ$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=kx+m}\end{array}\right.$£¬ÏûÔªµÃµ½£¨1+4k2£©x2+8kmx+4m2-4=0£¬
ÓÉΤ´ï¶¨ÀíÖª£¬x1+x2=-$\frac{8km}{1+4{k}^{2}}$£¬x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$£¬
ÓÉÏÒ³¤¹«Ê½Öª|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\frac{4\sqrt{{k}^{2}+1}•\sqrt{4{k}^{2}+1-{m}^{2}}}{1+4{k}^{2}}$£¬
Ô­µãµ½Ö±ÏßlµÄ¾àÀëΪd=$\frac{|m|}{\sqrt{1+{k}^{2}}}$£¬
¼ÙÉè´æÔÚÁ½¶¨µãΪA£¨s£¬0£©£¬B£¨t£¬0£©£¬
Òò´ËS¡÷OAB$\frac{1}{2}$|AB|d=$\frac{2|m|\sqrt{4{k}^{2}+1-{m}^{2}}}{1+4{k}^{2}}$=1£¬
¡à2|m|$\sqrt{1+4{k}^{2}-{m}^{2}}$=1+4k2£¬
Áî1+4k2=n£¬
¡à2|m|$\sqrt{n-{m}^{2}}$=n£¬
¡à4m4-4m2n+n2=0£¬
¼´n=2m2£¬
¼´1+4k2=2m2£¬¢Ù
ÓÖPΪÏ߶ÎABµÄÖе㣬xP=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{-4km}{1+4{k}^{2}}$£¬yP=$\frac{{y}_{1}+{y}_{2}}{2}$=$\frac{m}{1+4{k}^{2}}$£¬
Òò´Ë£¬xP=$\frac{-2k}{m}$£¬yP=$\frac{1}{2m}$£¬
Òò´Ë£¬$\frac{1}{2}$xP2+2yP2=1£¬
¼ÙÉè´æÔÚM£¨s£¬0£©£¬N£¨t£¬0£©£¬£¨s¡Ùt£©£¬
ÄÇôkPM=$\frac{{y}_{p}}{{x}_{P}-s}$£¨xp¡Ùs£©£¬kPN=$\frac{{y}_{P}}{{x}_{P}-t}$£¨xp¡Ùt£©£¬
¡àkPM•kPN=$\frac{1}{2}$•$\frac{1-\frac{{{x}_{P}}^{2}}{2}}{{{x}_{P}}^{2}-£¨s+t£©{x}_{P}+st}$=-$\frac{1}{4}$•$\frac{{{x}_{P}}^{2}-2}{{{x}_{P}}^{2}-£¨s+t£©{x}_{P}+st}$£¬
µ±s+t=0£¬st=-2ʱ£¬kPM•kPN=-$\frac{1}{4}$£¬
½âµÃs=$\sqrt{2}$£¬t=-$\sqrt{2}$£¬
¹ÊÔÚxÖáÉÏ´æÔÚÁ½¸ö¶¨µãM£¨$\sqrt{2}$£¬0£©£¬N£¨-$\sqrt{2}$£¬0£©Ê¹µÃÖ±ÏßPMÓëÖ±ÏßPNµÄбÂÊÖ®»ýΪ¶¨Öµ£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¶¨Òå¡¢·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²µÄ¶¨ÒåºÍ·½³ÌµÄÔËÓã¬Í¬Ê±¿¼²é´æÔÚÐÔÎÊÌâµÄ½â¾ö·½·¨£¬×¢ÒâÔËÓõãÂú×ã·½³Ì£¬ÒÔ¼°Ö±ÏßµÄбÂʹ«Ê½¼°ºã³ÉÁ¢Ë¼Ï룬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÖ±Ïßl1¡¢l2¡¢l3µÄλÖÃÈçͼËùʾ£¬Çëд³öÖ±Ïßl1¡¢l2¡¢l3µÄÒ»°ãʽ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¹ýµã£¨-1£¬5£©£¬ÇÒÓëÖ±Ïß$\frac{x}{2}$+$\frac{y}{6}$=1´¹Ö±µÄÖ±Ïß·½³ÌÊÇx-3y+16=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®¡÷ABCÖУ¬µãMÊDZßBCµÄÖе㣬|$\overrightarrow{AB}$|=4£¬|$\overrightarrow{AC}$|=3£¬Ôò$\overrightarrow{AM}$•$\overrightarrow{BC}$=$-\frac{7}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÉèʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}{y¡Ü2x+2}\\{x+y-2¡Ý0}\\{x¡Ü2}\end{array}\right.$£¬Ôò$\frac{y-1}{x+3}$µÄÈ¡Öµ·¶Î§ÊÇ[$-\frac{1}{5}£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Ó÷ûºÅ¡°£¾¡±¡¢¡°£¾¡±¡¢¡°=¡±Ìî¿Õ£º
${log}_{{5}^{3}}$£¼${log}_{{5}^{7}}$£»
${log}_{{8}^{1}}$=${log}_{{7}^{1}}$£»
${log}_{{\frac{1}{2}}^{5}}$£¼log${\;}_{\frac{1}{3}}$$\frac{1}{5}$£»
ln0.3£¼0£»
${log}_{{0.1}^{2}}$£¼0£»
lg$\frac{1}{3}$£¼lg10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚ¡÷ABCÖУ¬ÓÃ×ۺϷ¨Ö¤Ã÷£º$\frac{sinA}{sinA+sinB}$+$\frac{sinC}{sinB+sinC}$=1ÊÇ¡ÏB¡Ü60¡ãµÄ³ä·Ö²»±ØÒªÌõ¼þ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¹ýµãA£¨0£¬3£©£¬B£¨7£¬0£©µÄÖ±Ïßl1Óë¹ýµãC£¨2£¬1£©£¬D£¨3£¬k+1£©µÄÖ±Ïßl2»¥Ïà´¹Ö±£¬ÔòʵÊýkµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{3}{7}$B£®-$\frac{3}{7}$C£®-$\frac{7}{3}$D£®$\frac{7}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2016-2017ѧÄêºÓ±±¼½ÖÝÊи߶þÀíÉÏÔ¿¼ÈýÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÊýÁÐÖУ¬£¬ÔòÊýÁÐÇ°12ÏîºÍµÈÓÚ£¨ £©

A.76 B.78

C.80 D.82

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸