精英家教网 > 高中数学 > 题目详情
13.已知直线m,l和平面α,β,且l⊥α,m?β,给出下列四个命题:
①α∥β⇒l⊥m②α⊥β⇒l∥m③l∥m⇒α⊥β④l⊥m⇒α∥β
其中真命题的有①③(请填写全部正确命题的序号)

分析 直接利用空间中直线和平面的位置关系逐一核对四个命题得答案.

解答 解:在①中,由l⊥α,α∥β,得l⊥β,又m?β,故l⊥m,故①是真命题;
在②中,m可在平面β内任意转动,故l与m关系不确定,故②是假命题;
在③中,由l∥m,l⊥α,得m⊥α,又∵m?β,故α⊥β,故③是真命题;
在④中,平面β可绕m转动,故α与β关系不确定,故④是假命题.
故答案为:①③.

点评 本题考查命题的真假判断与应用,空间直线与平面的位置关系,考查空间想象能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.函数f(x)=$\frac{{\sqrt{2}}}{2}$(cosx-sinx)•sin($x+\frac{π}{4}$)-2asinx+b(a>0).
(1)若b=1,且对任意$x∈(0,\frac{π}{6})$,恒有f(x)>0,求a的取值范围;
(2)若f(x)的最大值为1,最小值为-4,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC中,∠A、∠B、∠C成等差数列,且$a=2\sqrt{2}$,$b=2\sqrt{3}$.求:
(1)求∠A,∠C的大小.
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点P(cosθ,tanθ)在第二象限,则角θ的终边在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知tanα=2,求下列各式的值
(Ⅰ)$\frac{4sinα-2cosα}{5cosα+3sinα}$
(Ⅱ)$\frac{1}{4}{sin^2}α+\frac{1}{3}sinαcosα+\frac{1}{2}{cos^2}α+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设x,y是正实数,记S为x,$y+\frac{1}{x}$,$\frac{1}{y}$中的最小值,则S的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.绝对值|x-1|的几何意义是数轴上的点x与点1之间的距离,那么对于实数a,b,|x-a|+|x-b|的几何意义即为点x与点a、点b的距离之和.
(1)直接写出|x-1|+|x-2|与|x-1|+|x-2|+|x-3|的最小值,并写出取到最小值时x满足的条件;
(2)设a1≤a2≤…≤an是给定的n个实数,记S=|x-a1|+|x-a2|+…+|x-an|.试猜想:若n为奇数,则当x∈{${a}_{\frac{n+1}{2}}$}时S取到最小值;若n为偶数,则当x∈[${a}_{\frac{n}{2}}$,${a}_{\frac{n}{2}+1}$]时,S取到最小值;(直接写出结果即可)
(3)求|x-1|+|2x-1|+|3x-1|+…+|10x-1|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.有如下几个结论:
①若函数y=f(x)满足:$f(x)=-\frac{1}{{f({x+1})}}$,则2为y=f(x)的一个周期,
②若函数y=f(x)满足:f(2x)=f(2x+1),则$\frac{1}{2}$为y=f(x)的一个周期,
③若函数y=f(x)满足:f(x+1)=f(1-x),则y=f(x+1)为偶函数,
④若函数y=f(x)满足:f(x+3)+f(1-x)=2,则(3,1)为函数y=f(x-1)的图象的对称中心.
正确的结论为①③(填上正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,求椭圆的方程.

查看答案和解析>>

同步练习册答案