精英家教网 > 高中数学 > 题目详情
已知函数f(x)的定义域为R,对任意实数u,v满足f(u+v)=f(u)+f(v),且f(uv)=uf(v)+vf(u).用含u、v、f(u)、f(v)的表达式来表示f(
u
v
)=
 
考点:抽象函数及其应用
专题:计算题,函数的性质及应用
分析:由于f(uv)=uf(v)+vf(u),则有f(u)=f(
u
v
•v)=
u
v
f(v)+vf(
u
v
),解出f(
u
v
)即可得到.
解答: 解:由于f(uv)=uf(v)+vf(u),
则有f(u)=f(
u
v
•v)=
u
v
f(v)+vf(
u
v

则有f(
u
v
)=
vf(u)-uf(v)
v2

故答案为:
vf(u)-uf(v)
v2
点评:本题考查抽象函数及运用,考查解决抽象函数的常用方法:赋值法,正确赋值是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若sinα=
k-1
k-3
,cosα=
k+1
k-3
,求
tanα-1
tanα+1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+x-xlnx(a>0).
(1)已知直线y=x+1与g(x)=f′(x)相切,求a的值;
(2)若函数满足f(1)=2,且在定义域内f(x)>bx2+2x恒成立,求实数b的取值范围;
(3)若函数f(x)在定义域上是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,右焦点为F,且椭圆E上的点到点F距离的最小值为2.
(1)求a,b的值;
(2)设椭圆E的左、右顶点分别为A,B,过点A的直线l与椭圆E及直线x=8分别相交于点M,N.
①当过A,F,N三点的圆半径最小时,求这个圆的方程;
②若cos∠AMB=-
65
65
,求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

地球赤道的半径为6370km,所以赤道上1°的弧长是
 
km.

查看答案和解析>>

科目:高中数学 来源: 题型:

我们用aij(1≤i≤n,1≤j≤n,i,j,n∈N*)表示矩阵的第i行第j列元素,已知该矩阵的每一行每一列都是等差数列,并且a11=1,a12=a21=2,a22=4.
(1)求a54
(2)求aij关于i,j的关系式;
(3)设行列式
.
a23a24a25
a33a34a35
a43a44a45
.
=D,求证:对任意1≤i,j≤n-2,i,j,n∈N*时,都有
.
aijai(j+1)ai(j+2)
a(i+1)ja(i+1)(j+1)a(i+1)(j+2)
a(i+2)ja(i+2)(j+1)a(i+2)(j+2)
.
=D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
长轴上有一顶点到两个焦点之间的距离分别为:3+2
2
,3-2
2

(1)求椭圆的方程;
(2)若点P椭圆上第一象限,F1,F2分别为椭圆的左右焦点,若满足
PF1
PF2
=0,求点P到椭圆右准线的距离;
(3)过点Q(1,0)作直线l(与x轴不垂直)与椭圆交于M,N两点,与y轴交于点R,若
RM
MQ
RN
NQ
,求证:λ+μ为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A=
11
23
,B=
12
23

(Ⅰ)求矩阵A的逆矩阵A-1
(Ⅱ)求直线x+y-1=0在矩阵A-1B对应的线性变换作用下所得曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列三角函数值:
(1)cos(-1050°);
(2)tan
19π
3

(3)sin(-
31π
4
).

查看答案和解析>>

同步练习册答案