精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求函数的单调区间;

2)设,若对任意,且,都有,求实数的取值范围.

【答案】1)见解析;(2.

【解析】

1)求出函数的定义域和导数,然后分两种情况讨论,分析的符号,可得出函数的单调区间;

2)设,由函数上的单调性,将不等式等价转化为,并构造函数,将问题转化为函数上是减函数,然后由上恒成立,结合参变量分离法可求出实数的取值范围.

1)函数的定义域为.

时,恒成立,此时,函数上单调递增;

时,由;由.

此时,函数的单调递增区间为,单调递减区间为

2时,函数上递增,上递减,

不妨设,则

等价于

,令

等价于函数上是减函数,

,即恒成立,

分离参数,得

上单调递减,

,又,故实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某果园种植糖心苹果已有十余年,根据其种植规模与以往的种植经验,产自该果园的单个糖心苹果的果径(最大横切面直径,单位:)在正常环境下服从正态分布.

1)一顾客购买了20个该果园的糖心苹果,求会买到果径小于56的概率;

2)为了提高利润,该果园每年投入一定的资金,对种植、采摘、包装、宣传等环节进行改进.如图是2009年至2018年,该果园每年的投资金额(单位:万元)与年利润增量(单位:万元)的散点图:

该果园为了预测2019年投资金额为20万元时的年利润增量,建立了关于的两个回归模型;

模型①:由最小二乘公式可求得的线性回归方程:

模型②:由图中样本点的分布,可以认为样本点集中在曲线:的附近,对投资金额做交换,令,则,且有.

I)根据所给的统计量,求模型②中关于的回归方程;

II)根据下列表格中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测投资金额为20万元时的年利润增量(结果保留两位小数).

回归模型

模型①

模型②

回归方程

102.28

36.19

附:若随机变量,则;样本的最小乘估计公式为

相关指数.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的极值;

(2)若函数有两个零点,求的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,如果存在实数使得,那么称的生成函数.

(1) 下面给出两组函数, 是否分别为的生成函数?并说明理由;

第一组:

第二组:

(2) 设 ,生成函数.若不等式上有解,求实数的取值范围;

(3) 设 ,取,生成函数图像的最低点坐标为.若对于任意正实数,且,试问是否存在最大的常数,使恒成立?如果存在,求出这个的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)对任意的恒成立,请求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和满足,.数列的前项和为,则满足的最小的值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在P地正西方向8kmA处和正东方向1kmB处各有一条正北方向的公路ACBD,现计划在ACBD路边各修建一个物流中心EF,为缓解交通压力,决定修建两条互相垂直的公路PEPF,设

为减少对周边区域的影响,试确定EF的位置,使的面积之和最小;

为节省建设成本,求使的值最小时AEBF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数ω0)的最小正周期为π

(Ⅰ)求ω的值和fx)的单调递增区间;

(Ⅱ)若关于x的方程fx)﹣m0在区间[0]上有两个实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我们的教材必修一中有这样一个问题,假设你有一笔资金,现有三种投资方案供你选择,这三种方案的回报如下:

方案一:每天回报元;

方案二:第一天回报元,以后每天比前一天多回报元;

方案三:第一天回报元,以后每天的回报比前一天翻一番.

记三种方案第天的回报分别为.

1)根据数列的定义判断数列的类型,并据此写出三个数列的通项公式;

2)小王准备做一个为期十天的短期投资,他应该选择哪一种投资方案?并说明理由.

查看答案和解析>>

同步练习册答案