精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}的前n项和为Sn , 且Sn=2an﹣3n,(n∈N*).
(1)证明数列{an+3}为等比数列
(2)求{Sn}的前n项和Tn

【答案】
(1)证明:令n=1,S1=2a1﹣3.∴a1=3

由 Sn+1=2an+1﹣3(n+1),Sn=2an﹣3n,

两式相减,得 an+1=2an+1﹣2an﹣3,

an+1=2an+3

an+1+3=2(an+3),

所以{an+3}为公比为2的等比数列


(2)解:an+3=(a1+3)2n1=62n1

∴an=62n1﹣3 …(10分)


【解析】(1)利用当n≥2时,Sn﹣Sn1=an , 可得得an=2an1+3,从而可构造等比数列求解an+3,进而可以判定{an+1}是等比数列;(2)通过求出数列{an+3} 的通项公式得出数列{an}的通项公式,再求和即可.
【考点精析】掌握等比关系的确定和数列的前n项和是解答本题的根本,需要知道等比数列可以通过定义法、中项法、通项公式法、前n项和法进行判断;数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,sinx), =(cos(2x+ ),sinx),函数f(x)= cos2x
(1)求函数f(x)的解析式及其单调递增区间;
(2)当x∈[0, ]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A1B1C1D1 , 则过点A与AB、BC、CC1所成角均相等的直线有(
A.1条
B.2条
C.4条
D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名同学参加某次数学考试成绩(单位:分)的频率分布直方图如下:

)求频率分布直方图中的值;

)分别求出成绩落在中的学生人数;

)从成绩在的学生中任选2人,求此2人的成绩都在中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

(1)求到平面的距离

(2)在线段上是否存在一点,使?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个二位号码中选取,小明利用如图所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第四个被选中的红色球号码为( )

81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85

06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49

A. 12 B. 33 C. 06 D. 16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中, .数列的前n项和为,满足

(1)求数列的通项公式;

(2)数列能否为等差数列?若能,求其通项公式;若不能,试说明理由;

(3)若数列是各项均为正整数的递增数列,设,则当 均成等差数列时,求正整数 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆F1:(x+1)2+y2=16,定点F2(1,0),A是圆F1上的一动点,线段F2A的垂直平分线交半径F1AP点.

(1)求P点的轨迹C的方程;

(2)四边形EFGH的四个顶点都在曲线C上,且对角线EG,FH过原点O,

kEGkFH=-,求证:四边形EFGH的面积为定值,并求出此定值.

查看答案和解析>>

同步练习册答案