精英家教网 > 高中数学 > 题目详情

【题目】已知在四棱锥P﹣ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F分别是线段AB,BC的中点.
(1)证明:PF⊥FD;
(2)若PA=1,求点E到平面PFD的距离.

【答案】
(1)证明:连接AF,则AF= ,DF=

又AD=2,∴DF2+AF2=AD2,∴DF⊥AF,

又PA⊥平面ABCD,∴DF⊥PA,又PA∩AF=A,

∴DF⊥平面PAF,

又PF平面PAF,

∴DF⊥PF.


(2)解:∵SEFD=2﹣ =

∴VPEFD= =

∵VEPFD=VPAFD

,解得h= ,即点E到平面PFD的距离为


【解析】(1)连接AF,通过计算利用勾股定理证明DF⊥AF,证明DF⊥PA,推出DF⊥平面PAF,然后证明DF⊥PF.(2)利用等体积方法,求点E到平面PFD的距离.
【考点精析】通过灵活运用直线与平面垂直的性质,掌握垂直于同一个平面的两条直线平行即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】濮阳市黄河滩区某村2010年至2016年人均纯收入(单位:万元)的数据如下表:

年份

2010

2011

2012

2013

2014

2015

2016

年份代号x

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y关于x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2010年至2016年该村人均纯收入的变化情况,并预测该村2017年人均纯收入.
附:回归直线的斜率和截距的最小乘法估计公式分别为: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,若f(a)=f(b)=f(c)=f(d),其中a,b,c,d互不相等,则对于命题p:abcd∈(0,1)和命题q:a+b+c+d∈[e+e1﹣2,e2+e2﹣2)真假的判断,正确的是(
A.p假q真
B.p假q假
C.p真q真
D.p真q假

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三条直线l1:4xy-4=0,l2mxy=0,l3:2x-3my-4=0.

(1)若直线l1l2l3交于一点,求实数m的值;

(2)若直线l1l2l3不能围成三角形,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=f(x)图象上不同两点A(x1 , y1),B(x2 , y2)处的切线的斜率分别是kA , kB , 规定φ(A,B)= (|AB|为线段AB的长度)叫做曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题: ①函数y=x3图象上两点A与B的横坐标分别为1和﹣1,则φ(A,B)=0;
②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;
③设点A,B是抛物线y=x2+1上不同的两点,则φ(A,B)≤2;
④设曲线y=ex(e是自然对数的底数)上不同两点A(x1 , y1),B(x2 , y2),则φ(A,B)<1.
其中真命题的序号为 . (将所有真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图程序框图输出的结果为(
A.52
B.55
C.63
D.65

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在(0,+∞)上的增函数,且满足=1.

(1)求证: =3;

(2)求不等式>3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:

甲:82 81 79 78 95 88 93 84

乙:92 95 80 75 83 80 90 85

(1)用茎叶图表示这两组数据;

(2)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加较合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于的一元二次方程. .

(1)若是从0、1、2、3四个数中任取的一个数, 是从0、1、2三个数中任取的一个数,求上述方程有实数根的概率;

(2)若是从区间任取的一个数, 是从区间任取的一个数,求上述方程有实数根的概率.

查看答案和解析>>

同步练习册答案