精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A,B,C的对边分别为a,b,c,已知a:b:c=2:4:5,求
2sinB
3sinC-5sinA
的值.
考点:正弦定理
专题:解三角形
分析:a:b:c=2:4:5,可设a=2k,b=4k,c=5k≠0.再利用正弦定理代入即可得出.
解答: 解:∵a:b:c=2:4:5,
设a=2k,b=4k,c=5k≠0.
由正弦定理可得:
2sinB
3sinC-5sinA
=
2b
3c-5a
=
2×4k
3×5k-5×2k
=
8
5
点评:本题考查了正弦定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)在x=a处有导数,则
lim
h→a
f(h)-f(a)
h-a
为(  )
A、f(a)B、f′(a)
C、f′(h)D、f(h)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,AB=2,AD=2
2
,PA=2,则异面直线BC与AE所成的角的大小为(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2=8,过点P0(-1,2)的直线l与圆交于A、B两点,O为坐标原点,分别求满足下列条件时直线l的方程:
(1)|AB|=
14

(2)
OA
OB
=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,数列{an}是首项与公比均为a的等比数列,数列{bn}满足bn=an•lgan
(1)若a=3,求数列{bn}的前n项和Sn
(2)若对于n∈N*,总有bn<bn+1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=(x-k)2e 
x
k
,求导f′(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个底面半径为R的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是(  )
A、
1
2
B、
3
2
C、
3
3
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos2α-cos2β=a,那么sin(α+β)sin(α-β)等于(  )
A、-
a
2
B、
a
2
C、-a
D、a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x+1)=f(x)+1,当x∈[0,1]时,f(x)=|3x-1|-1,若对任意实数x,都有f(x+a)<f(x)成立,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案