精英家教网 > 高中数学 > 题目详情
若关于x的二次函数f(x)=-x2+bx+c对一切实数x都有:f(2+x)=f(2-x)恒成立.当a∈R时,判断f(
5
4
)与f(-a2-a+1)的大小关系,并说明理由.
考点:二次函数的性质
专题:函数的性质及应用
分析:由题意求得函数f(x)在(-∞,2)上是减函数,再根据-a2-a+1=-(a+
1
2
)
2
+
5
4
5
4
,可得f(
5
4
)<f(-a2-a+1).
解答: 解:关于x的二次函数f(x)=-x2+bx+c对一切实数x都有:f(2+x)=f(2-x)恒成立,
故二次函数的对称轴方程为x=2=
b
2

∴b=4,f(x)=-x2+4x+c,显然函数在(-∞,2)上是减函数.
由于-a2-a+1=-(a+
1
2
)
2
+
5
4
5
4

∴f(
5
4
)<f(-a2-a+1).
点评:本题主要考查二次函数的性质的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R的函数f(x),其导函数f′(x)的部分图象如图所示,则下列判断一定正确的是(  )
A、f(a)=f(c)=f(e)
B、f(b)>f(c)>f(d)
C、f(c)>f(b)>f(a)
D、f(c)>f(d)>f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:

说出下列三视图表示的几何体,并画出该几何体.

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂生产一种内径为105mm的零件,为了检查该生产流水线的质量情况,随机抽取该流水线上50个零件作为样本测出它们的内径长度(单位:mm),长度的分组区间为[90,95),[95,100),[100,105),[105,110),[110,115),由此得到样本的频率分布直方图,如图所示.已知内径长度在[100,110)之间的零件被认定为一等品,在[95,100)或[110,115)之间的零件被认定为二等品,否则认定为次品.
(1)从上述样品中随机抽取1个零件,求恰好是一个次品的概率;
(2)以上述样本数据来估计该流水线的总体数据,若从流水线上(产品众多)任意抽取3个零件,设一等品的数量为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式ax2-x-c>0的解集为{x|-2<x<1},则函数y=ax2+x-c的零点为(  )
A、(-1,0)和(2,0)
B、(-1,0)
C、(2,0)
D、-1和2

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年10月四川省天府新区成为国家级新区.其中包括高新区的中和、桂溪和石羊三个街道,现在三个街道共引进A、B、C、D四个项目,每个街道至少引进一个项目,共有
 
种不同的引进方法.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,an=
1
an-1
+1,则a4=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=x2+2ax+1在R上有零点,命题q:x2+3(a+1)x+2≤0在区间[
1
2
3
2
]内恒成立,若命题“p且q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,由于不慎将部分数据丢失,但知道后5组的频数成等比数列,设视力在4.6到4.9之间的学生数为a,最大频率为b,则a,b的值分别为(  )
A、77,0.53
B、70,0.32
C、77,5.3
D、70,3.2

查看答案和解析>>

同步练习册答案