精英家教网 > 高中数学 > 题目详情

(本题满分12分)

如图,正四棱锥S-ABCD 的底面是边长为正方形,为底面

对角线交点,侧棱长是底面边长的倍,P为侧棱SD上的点.                 

(Ⅰ)求证:ACSD

(Ⅱ)若SD平面PAC中点,求证:∥平面PAC;

(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E, 使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由。

 

【答案】

 

证明:(Ⅰ)连接SO

          1分

   又           2分

   又 

                   3分

                        4分

(Ⅱ)连接OP

 

              5分

   又           6分

 因为; 所以                         7分

  又

∥平面PAC                                                   8分

(Ⅲ)解:存在E,        使得BE∥平面PAC.

      过,连接,则为所要求点.     

    ∥平面PAC

    由(Ⅱ)知:∥平面PAC,而

    ∥平面PAC                                        10分

∥平面PAC 

中点,

又因为中点                            12分

所以,在侧棱上存在点,当时,∥平面PAC 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案
闂佺ǹ楠忛幏锟� 闂傚倸鍋婇幏锟�