精英家教网 > 高中数学 > 题目详情
14.在四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD为等边三角形,$AB=AD=\frac{1}{2}CD$,AB⊥AD,AB∥CD,点M是PC的中点.
(I)求证:MB∥平面PAD;
(II)求二面角P-BC-D的余弦值.

分析 (Ⅰ)取PD中点H,连结MH,AH.推导出四边形ABMH为平行四边形,从而BM∥AH,由此能证明BM∥平面PAD.
(Ⅱ) 取AD中点O,连结PO.以O为原点,建立空间直角坐标系,利用向量法能求出二面角P-BC-D的余弦值.

解答 (本小题满分12分)
证明:(Ⅰ)取PD中点H,连结MH,AH.
因为 M为${x_1}=-\sqrt{2}$中点,所以 $HM∥CD,HM=\frac{1}{2}CD$.
因为$AB∥CD,AB=\frac{1}{2}CD$.所以AB∥HM且AB=HM.
所以四边形ABMH为平行四边形,所以 BM∥AH.
因为 BM?平面PAD,AH?平面PAD,
所以BM∥平面PAD.…..(5分)
解:(Ⅱ) 取AD中点O,连结PO.
因为 PA=PD,所以PO⊥AD.
因为 平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,PO?平面PAD,
所以PO⊥平面ABCD.取BC中点K,连结OK,则OK∥AB.
以O为原点,如图建立空间直角坐标系,
设AB=2,则 $A(1,0,0),B(1,2,0),C(-1,4,0),D(-1,0,0),P(0,0,\sqrt{3})$,$\overrightarrow{BC}=(-2,2,0),\overrightarrow{PB}=(1,2,-\sqrt{3})$.
平面BCD的法向量$\overrightarrow{OP}=(0,0,\sqrt{3})$,
设平面PBC的法向量$\overrightarrow{{n_{\;}}}=(x,y,z)$,
由$\left\{\begin{array}{l}\overrightarrow{BC}•\overrightarrow{{n_{\;}}}=0\\ \overrightarrow{PB}•\overrightarrow{{n_{\;}}}=0\end{array}\right.$,得$\left\{\begin{array}{l}-2x+2y=0\\ x+2y-\sqrt{3}z=0.\end{array}\right.$令x=1,则$\overrightarrow{{n_{\;}}}=(1,1,\sqrt{3})$.
$cos<\overrightarrow{OP},\overrightarrow{{n_{\;}}}>=\frac{{\overrightarrow{OP}•\overrightarrow n}}{{|\overrightarrow{OP}||\overrightarrow{n|}}}=\frac{{\sqrt{15}}}{5}$.
由图可知,二面角P-BC-D是锐二面角,
所以二面角P-BC-D的余弦值为$\frac{{\sqrt{15}}}{5}$.…..(12分)

点评 本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数y=sin(2x+$\frac{π}{3}$)的图象可以由函数y=sin2x的图象(  )得到.
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和${A_n}={n^2}({n∈{N^*}}),{b_n}=\frac{a_n}{{{a_{n+1}}}}+\frac{{{a_{n+1}}}}{a_n}({n∈{N^*}})$,数列{bn}的前n项和为Bn
(1)求数列{an}的通项公式;
(2)设${c_n}=\frac{a_n}{2^n}({n∈{N^*}})$,求数列{cn}的前n项和Cn
(3)证明:$2n<{B_n}<2n+2({n∈{N^*}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且满足$\frac{2a-b}{cosB}=\frac{c}{cosC}$.
(1)求角C的值;
(2)若c=7,△ABC的面积为$10\sqrt{3}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:x2-5x-6≤0,命题q:x2-2x+1-4a2≤0(a>0),若¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.i是虚数单位,复数z=a+i(a∈R)满足z2+z=1-3i,则|z|=(  )
A.$\sqrt{2}$或$\sqrt{5}$B.2或5C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设实数x,y满足约束条件$\left\{\begin{array}{l}x-2y-5≤0\\ x+y-4≤0\\ 3x+y-10≥0\end{array}\right.$,则z=x2+y2的最小值为(  )
A.$\sqrt{10}$B.10C.8D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知F为双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为$\frac{32}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.${({x^2}-\frac{1}{2x})^6}$展开式中的常数项是$\frac{15}{16}$.

查看答案和解析>>

同步练习册答案