精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x-2
2x
+2(x≥2)

(1)求反函数f-1(x);
(2)若数列{an}(an>0)的前n项和Sn满足:a1=2,Sn=f-1(Sn-1)(n≥2)
①求数列{an}的通项公式.
②令bn=a2n+n,求数列{bn}前n项和Tn
分析:(1)函数f(x)=x-2
2x
+2(x≥2)
,得2
2
x=x-y+2,x≥2
,两边平方,并整理,得x2-(2y+4)x+y2-4y+4=0,x≥2.所以x=y+2+2
y
=(
2
+
x
)
2
,x,y互换,得反函数f-1(x).
(2)①由
Sn
=
Sn-1
+
2
,知Sn=2n2,由此能求出数列{an}的通项公式.
②由bn=4(2n+n)-2,由求出数列{bn}前n项和Tn
解答:解:(1)∵函数f(x)=x-2
2x
+2(x≥2)

2
2
x=x-y+2,x≥2

两边平方,得8x2=x2+y2+4-2xy-4y+4x,
整理,得x2-(2y+4)x+y2-4y+4=0,x≥2.
x=
2y+4+
4y2+16y+16-4y2+16y-16
2

=y+2+2
2y
=(
2
+
y
)
2

x,y互换,得f-1(x)=(
x
+
2
)2(x≥0)

(2)①∵a1=2,Sn=f-1(Sn-1)(n≥2)
f-1(x)=(
x
+
2
)2(x≥0)

Sn=(
Sn-1
+
2
)
2

Sn
=
Sn-1
+
2

S 1
=
a1
=
2

Sn
=
2
+(n-1)
2
=
2
n

∴Sn=2n2
∵a1=S1=2,
an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
当n=1时,4n-2=2=a1
∴an=4n-2.
②∵bn=a2n+n
且an=4n-2.
∴bn=4(2n+n)-2,
∴Tn=4(1+2+3+…+n)+4(2+22+23+…+2n)-2n
Tn=4•
2(1-2n)
1-2
+4•
n(n+1)
2
-2n=2n+3+2n2-8
点评:本题考查反函数的求法、数列通项公式的求法和数列的前n项和的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案