精英家教网 > 高中数学 > 题目详情

【题目】已知直线l:(2 +1)x+( +2)y+2 +2=0( ∈R),有下列四个结论:
直线l经过定点(0,-2);
②若直线l在x轴和y轴上的截距相等,则 =1;
∈[1, 4+3 ]时,直线l的倾斜角q∈[120°,135°];
④当 ∈(0,+∞)时,直线l与两坐标轴围成的三角形面积的最小值为
其中正确结论的是(填上你认为正确的所有序号).

【答案】③④
【解析】①因为直线l:
所以直线l恒过定点 ,错;
②若直线l在x轴和y轴上的截距相等,则其斜率为-1,所以 ,所以l=1.若直线过原点,在x轴和y轴上的截距均为0,则 ,错.
③因为直线l的斜率 ,
所以 ,显然直线l的倾斜角q ,正确.


时,S取得最小值,最小值为 .正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的定义域是,则实数的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知过点 的光线,经 轴上一点 反射后的射线 过点 .
(1)求点 的坐标;
(2)若圆 过点 且与 轴相切于点 ,求圆 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是( )
A.(x-2)2+(y-1)2=1
B.(x-2)2+(y-3)2=1
C.(x-3)2+(y-2)2=1
D.(x-3)2+(y-1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣lnx.
(1)求函数y=f(x)的单调区间;
(2)设g(x)=x﹣t,若函数h(x)=g(x)﹣f(x)在[ ,e]上(这里e≈2.718)恰有两个不同的零点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共12分)

如图,边长为3的正方形所在平面与等腰直角三角形所在平面互相垂直, ,且 .

(Ⅰ)求证: 平面

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记函数的定义域为 )的定义域为.

(1)求

(2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求曲线在点处的切线方程;

(2)若处取得极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为 的正方形,E为PC的中点,PB=PD.平面PBD⊥平面ABCD.
(1)证明:PA∥平面EDB.
(2)求三棱锥E﹣BCD与三棱锥P﹣ABD的体积比.

查看答案和解析>>

同步练习册答案