£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
£¨A£©£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩
Èçͼ£¬ÈôPA=PB£¬¡ÏAPB=2¡ÏACB£¬ACÓëPB½»ÓÚµãD£¬ÇÒPB=4£¬PD=3£¬ÔòAD•DC=
7
7
£®
£¨B£©£¨¼«×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩
ÈôÖ±Ïßl£ºx-
3
y=0
ÓëÇúÏßC£º
x=a+
2
cos?
y=
2
sin?
(?
Ϊ²ÎÊý£¬a£¾0£©ÓÐÁ½¸ö¹«¹²µãA¡¢B£¬ÇÒ|AB|=2£¬ÔòʵÊýaµÄֵΪ
2
2
£®
£¨C£©£¨²»µÈʽѡ×öÌ⣩
²»µÈʽ|2x-1|-|x-2|£¼0µÄ½â¼¯Îª
.
x 
  
.
-1£¼x£¼1
.
x 
  
.
-1£¼x£¼1
£®
·ÖÎö£º£¨A£©ÒÔPΪԲÐÄ£¬ÒÔPA=PBΪ°ë¾¶×÷Ô²£¬ÑÓ³¤BD½»Ô²ÓÚM£¬Èçͼ£¬Ö¤Ã÷CÔÚÔ²ÉÏ£¬ÀûÓÃAD•DC=BD•DMÀ´Çó³öËüµÄÖµ£®
£¨B£©ÀûÓÃͬ½ÇÈý½Çº¯ÊýµÄ»ù±¾¹ØϵÏûÈ¥²ÎÊý∅£¬»¯ÎªÆÕͨ·½³ÌΪ £¨x-a£©2+y2=2 ¢Ù£¬Çó³öÔ²ÐÄCµ½Ö±ÏߵľàÀëd£¬ÓÉÏÒ³¤¹«Ê½ÇóµÃʵÊýaµÄÖµ£»°Ñx=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈë¢Ù»¯¼ò¿ÉµÃ
ÇúÏßCµÄ¼«×ø±ê·½³Ì£®
£¨C£©²»µÈʽ|2x-1|-|x-2|£¼0 ¼´|2x-1|£¼|x-2|£¬Æ½·½¿ÉµÃ 3x2£¼3£¬ÓÉ´ËÇóµÃ²»µÈʽ|2x-1|-|x-2|£¼0µÄ½â¼¯£®
½â´ð£º½â£º£¨A£©ÒÔPΪԲÐÄ£¬ÒÔPA=PBΪ°ë¾¶×÷Ô²£¬ÑÓ³¤BD½»Ô²ÓÚM£¬Èçͼ£ºPA=PB=4£¬¡ÏAPB=2¡ÏACB£¬ACÓëPB½»ÓÚµãD£¬PD=3£¬
Éè¡ÏACB=¦È£¬Ôò¡ÏAPM=2¦È£¬ÓÖ¡ÏACB=¦È£¬¡àCÔÚÔ²ÉÏ£®
¡àAD•DC=BD•DM=BD•£¨PM+PD£©=1•£¨4+3£©=7£¬
¹Ê´ð°¸Îª 7£®
£¨B£©ÓÉC£º
x=a+
2
cos?
y=
2
sin?
¿ÉµÃ x-a=
2
cos∅£¬y=
2
sin∅£¬Æ½·½Ïà¼Ó¿ÉµÃ £¨x-a£©2+y2=2 ¢Ù£¬
±íʾÒÔC£¨a£¬0£©ÎªÔ²ÐÄ£¬ÒÔ
2
Ϊ°ë¾¶µÄÔ²£¬Ô²ÐÄCµ½Ö±ÏßlµÄ¾àÀëµÈÓÚd=
|a-0|
1+3
=
a
2
£®
ÔÙÓÉÏÒ³¤¹«Ê½¿ÉµÃ
|AB|
2
=1=
r2-2
=
2-
a2
4
£¬½âµÃa=2£¬
¹Ê´ð°¸Îª 2£®
£¨C£©²»µÈʽ|2x-1|-|x-2|£¼0 ¼´|2x-1|£¼|x-2|£¬Æ½·½¿ÉµÃ 3x2£¼3£¬½âµÃ-1£¼x£¼1£¬
¹Ê´ð°¸Îª {x|-1£¼x£¼1 }£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éËĵ㹲ԲµÄÐÔÖÊÓëÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬°Ñ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³ÌµÄ·½·¨£¬µãµ½Ö±ÏߵľàÀ빫ʽ£¬°ÑÖ±½Ç×ø±ê·½³Ì»¯Îª¼«×ø±ê·½³Ì£¬¾ø¶ÔÖµ²»µÈʽµÄ½â·¨£¬ÊôÓÚÖеÈÌâ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍø£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀ·Ö£©
A£®£¨²»µÈʽѡ×öÌ⣩²»µÈʽ|x+1|¡Ý|x+2|µÄ½â¼¯Îª
 
£®
B£®£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩ÈçͼËùʾ£¬¹ý¡ÑOÍâÒ»µãP×÷Ò»ÌõÖ±ÏßÓë¡ÑO½»ÓÚA£¬BÁ½µã£¬
ÒÑÖªPA=2£¬µãPµ½¡ÑOµÄÇÐÏß³¤PT=4£¬ÔòÏÒABµÄ³¤Îª
 
£®
C£®£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÈôÖ±Ïß3x+4y+m=0ÓëÔ²
x=1+cos¦È
y=-2+sin¦È
£¨¦ÈΪ²ÎÊý£©Ã»Óй«¹²µã£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨ÈýÑ¡Ò»£¬¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀ·Ö£©
£¨1£©£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÔÚÖ±½Ç×ø±êϵÖÐÔ²CµÄ²ÎÊý·½³ÌΪ
x=1+2cos¦È
y=
3
+2sin¦È
£¨¦ÈΪ²ÎÊý£©£¬ÔòÔ²CµÄÆÕͨ·½³ÌΪ
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4
£®
£¨2£©£¨²»µÈʽѡ½²Ñ¡×öÌ⣩É躯Êýf£¨x£©=|2x+1|-|x-4|£¬Ôò²»µÈʽf£¨x£©£¾2µÄ½â¼¯Îª
{x|x£¼-7»òx£¾
5
3
}
{x|x£¼-7»òx£¾
5
3
}
£®
£¨3£©£¨¼¸ºÎÖ¤Ã÷Ñ¡½²Ñ¡×öÌ⣩ ÈçͼËùʾ£¬µÈÑüÈý½ÇÐÎABCµÄµ×±ßAC³¤Îª6£¬ÆäÍâ½ÓÔ²µÄ°ë¾¶³¤Îª5£¬ÔòÈý½ÇÐÎABCµÄÃæ»ýÊÇ
3
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
£¨A£©£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩Èçͼ£¬CDÊÇÔ²OµÄÇÐÏߣ¬ÇеãΪC£¬µãBÔÚÔ²OÉÏ£¬BC=2£¬¡ÏBCD=30¡ã£¬ÔòÔ²OµÄÃæ»ýΪ
4¦Ð
4¦Ð
£»
£¨B£©£¨¼«×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩¼«×ø±ê·½³Ì¦Ñ=2sin¦È+4cos¦È±íʾµÄÇúÏ߽ئÈ=
¦Ð
4
(¦Ñ¡ÊR)
ËùµÃµÄÏÒ³¤Îª
3
2
3
2
£»
£¨C£©£¨²»µÈʽѡ×öÌ⣩  ²»µÈʽ|2x-1|£¼|x|+1½â¼¯ÊÇ
£¨0£¬2£©
£¨0£¬2£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
A£®Èçͼ£¬¡÷ABCÊÇ¡ÑOµÄÄÚ½ÓÈý½ÇÐΣ¬PAÊÇ¡ÑOµÄÇÐÏߣ¬PB½»ACÓÚµãE£¬½»¡ÑOÓÚµãD£®ÈôPA=PE£¬¡ÏABC=60¡ã£¬PD=1£¬PB=9£¬ÔòEC=
4
4
£®
B£® PΪÇúÏßC1£º
x=1+cos¦È
y=sin¦È
£¬£¨¦ÈΪ²ÎÊý£©ÉÏÒ»µã£¬ÔòËüµ½Ö±ÏßC2£º
x=1+2t
y=2
£¨tΪ²ÎÊý£©¾àÀëµÄ×îСֵΪ
1
1
£®
C£®²»µÈʽ|x2-3x-4|£¾x+1µÄ½â¼¯Îª
{x|x£¾5»òx£¼-1»ò-1£¼x£¼3}
{x|x£¾5»òx£¼-1»ò-1£¼x£¼3}
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁжþÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣®£©
£¨A£©£¨Ñ¡ÐÞ4-4×ø±êϵÓë²ÎÊý·½³Ì£©ÇúÏß
x=cos¦Á
y=a+sin¦Á
£¨¦ÁΪ²ÎÊý£©ÓëÇúÏߦÑ2-2¦Ñcos¦È=0µÄ½»µã¸öÊýΪ
 
¸ö£®
£¨B£©£¨Ñ¡ÐÞ4-5²»µÈʽѡ½²£©Èô²»µÈʽ|x+1|+|x-3| ¡Ýa+
4
a
¶ÔÈÎÒâµÄʵÊýxºã³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸