精英家教网 > 高中数学 > 题目详情
19.已知a,b,c分别是△ABC的内角A,B,C的对边,BC边上的高为$\frac{a}{2}$,则$\frac{c}{b}$的最大值为$\sqrt{5}$.

分析 由已知及余弦定理可求:($\frac{c}{b}$)2=($\frac{a}{b}$)2+1-$\frac{2acosC}{b}$,进而可求当cosC=0时,$\frac{c}{b}$取最大值,求得C为直角,利用勾股定理即可计算得解.

解答 解:由题意知c2=a2+b2-2abcosC,
两边同时除以b2,可得:($\frac{c}{b}$)2=($\frac{a}{b}$)2+1-$\frac{2acosC}{b}$,
由于a,b,c都为正数,
可得:当cosC=0时,$\frac{c}{b}$取最大值.
由于C∈(0,π),可得:C=$\frac{π}{2}$,
即当BC边上的高与b重合时取得最大值,此时三角形为直角三角形,c2=a2+($\frac{a}{2}$)2
解得:$\frac{c}{b}$=$\sqrt{5}$.
故答案为:$\sqrt{5}$.

点评 本题主要考查了的考点有:余弦定理;函数的最值,考查了余弦定理及其应用,解题时要认真审题,仔细解答,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(Ⅰ)求证:直线BD1∥平面PAC;
(Ⅱ)求证:平面PAC⊥平面BDD1
(Ⅲ)求直线PB1与平面PAC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,四边形ABCD是平行四边形,E、F分别是AB、PC中点,求证:EF∥面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某单位员工按年龄分为A、B、C三个等级,其人数之比为5:4:1,现用分层抽样的方法从总体中抽取一个容量为20的样本,则从C等级组中应抽取的样本数为(  )
A.2B.4C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将函数f(x)=$\sqrt{3}$sinxcosx+sin2x的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x轴向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,则y=g(x)的一个递增区间是(  )
A.$[{-\frac{π}{6},\frac{5π}{6}}]$B.$[{-\frac{π}{2},\frac{π}{2}}]$C.$[{-\frac{π}{12},\frac{4π}{3}}]$D.$[{-\frac{π}{4},0}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知平面直角坐标系xoy中,点P(1,0),曲线C的参数方程为$\left\{\begin{array}{l}x=2cosφ\\ y=sinφ\end{array}\right.$(φ为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,倾斜角为α的直线l的极坐标方程为ρsin(α-θ)=sinα.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)若曲线C与直线l交于M,N两点,且$|{\frac{1}{{|{PM}|}}-\frac{1}{{|{PN}|}}}|=\frac{1}{3}$,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在四面体ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b,\overrightarrow{AD}$=$\overrightarrow c$,点M在AB上,且AM=$\frac{2}{3}$AB,点N是CD的中点,则$\overrightarrow{MN}$=(  )
A.$\frac{1}{2}\overrightarrow a-\frac{2}{3}\overrightarrow b+\frac{1}{2}\overrightarrow c$B.$-\frac{2}{3}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c$C.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\frac{1}{2}\overrightarrow c$D.$-\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b-\frac{1}{2}\overrightarrow c$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知sinα=-$\sqrt{3}$cosα,则tan2α=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知P(x0,y0)是单位圆上任一点,将射线OP绕点O顺时针转$\frac{π}{3}$到OQ交单位圆与点Q(x1,y1),若my0-y1的最大值为$\frac{3}{2}$,则实数m=$\frac{1±\sqrt{6}}{2}$.

查看答案和解析>>

同步练习册答案