(本小题满分14分) 已知函数.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,函数图象上的点都在所表示的平面区域内,求实数a的取值范围.
(Ⅲ)求证:(其中,e是自然对数的底数).
(Ⅰ)的单调递增区间为,单调递减区间为.
(Ⅱ).(Ⅲ)见解析。
【解析】本试题主要是考出了导数在研究函数中的运用。
(1)因为当时,(),
(),
由解得,由解得.得到单调区间。
(2)因函数图象上的点都在所表示的平面区域内,则当时,不等式恒成立,即恒成立,设(),只需即可,转化思想的运用。
(3)据(Ⅱ)知当时,在上恒成立(或另证在区间上恒成立)结合放缩法得到结论。
(Ⅰ)当时,(),
(),
由解得,由解得.
故函数的单调递增区间为,单调递减区间为.········· 4分
(Ⅱ)因函数图象上的点都在所表示的平面区域内,则当时,不等式恒成立,即恒成立,设(),只需即可. 5分
由,
(ⅰ)当时, ,当时,,函数在上单调递减,故成立. 6分
(ⅱ)当时,由,因,所以,
①若,即时,在区间上,,则函数在上单调递增,在上无最大值(或:当时,),此时不满足条件;
②若,即时,函数在上单调递减,在区间上单调递增,同样在上无最大值,不满足条件.·························· 8分
(ⅲ)当时,由,∵,∴,
∴,故函数在上单调递减,故成立.
综上所述,实数a的取值范围是.··················· 10分
(Ⅲ)据(Ⅱ)知当时,在上恒成立(或另证在区间上恒成立), 11分
又,
∵
,
∴.··········· 14分
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com