精英家教网 > 高中数学 > 题目详情
14.已知△ABC中,∠ABC=90°,AB=1.AC=2,若△ABC内部的一点P满足$\frac{{S}_{△PAB}}{PA•PB}$=$\frac{{S}_{△PBC}}{PB•PC}=\frac{{S}_{△PAC}}{PA•PC}$,则PA+PB+PC的值为$\sqrt{7}$.

分析 由三角形的面积公式可得∠APB=∠BPC=∠APC=120°,以AC为底边向三角形ABC外作正三角形ACQ,可得PA+PB+PC=BQ,由余弦定理可得.

解答 解:由三角形的面积公式可得S△PAB=$\frac{1}{2}$•PA•PBsin∠APB,
S△PBC=$\frac{1}{2}$•PB•PCsin∠BPC,S△PAC=$\frac{1}{2}$•PA•PCsin∠APC,
∴已知式子可化为sin∠APB=sin∠BPC=sin∠APC,
由几何关系可得∠APB=∠BPC=∠APC=120°,
以AC为底边向三角形ABC外作正三角形ACQ,
由题意可得∠ABC=90°,AB=1,AC=2,
∴∠BAC=60°,∠BAQ=120°,
故PA+PB+PC=BQ=$\sqrt{{1}^{2}+{2}^{2}-2×1×2×cos120°}$=$\sqrt{7}$
故答案为:$\sqrt{7}$

点评 本题考查正余弦定理解三角形,涉及三角形的面积公式和余弦定理的应用,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若集合M={y|y=sinx},N={x|x2-4≤0},则M∩N=[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\frac{1-x}{1+x}$.
(1)求f(f(2)))的值;
(2)若实数a满足f(a2)=$-\frac{3}{5}$,且lg2a-1<0,求a的值;
(3)设函数f1(x)=f(x)=$\frac{1-x}{1+x}$(x≠-1),对于一切正整数n,都有fn+1(x)=f1(fn(x)),且f3(x)=f4(x),求f2012(x)的值;
(4)设函数φ(x)=$\frac{1+x}{x-1}|x-2{|}^{\frac{1}{2}}$(x≠1),若函数g(x)=f(x)•φ(x),t=a2-2a+$\frac{13}{3}$(a∈R),试判断g(1.2),g(2.5),g(t)的大小关系.(请按由大到小的顺序排)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.小明一家三口都会下棋,在假期里的每一天中,父母都交替与小明下棋,已知小明胜父亲的概率是$\frac{1}{2}$,胜母亲的概率是$\frac{2}{3}$,且各盘棋之间是相互独立的.
(1)如果共下7盘棋,并且小明与父亲先下,求小明恰胜一盘的概率;
(2)如果共下3盘棋,小明与父亲先下,且规定每胜一盘得1分,每负一盘减1分,求小明最终得分ξ的分布列;
(3)某天父母与小明约定下三盘棋,只要他在三盘中能至少连胜两盘,就给他买新的钢笔,那么小明为了获胜希望更大,他应该先与父亲下,还是先与母亲下?请用计算说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图(1),已知A,B,C.P四点共面,PC上AC,AB=BC,D,F分别为AC,PC的中点,DE⊥AP于E.把平面四边形ABCP沿AC折成直二面角,如图(2).
(1)求i正:AP⊥平面BDE;
(2)求证:平面BDF⊥平面BDE;
(3)延长AB至H,使得AB=BH,如图(3).在AP上是否存在点Q,使得平面CHQ∥平面BDE?若存在,指出Q点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数${f_n}(x)=a{x^n}+bx+c(a,b,c∈R)$
(1)若f1(x)=3x+1,f2(x)为偶函数,求a,b,c的值;
(2)若对任意实数x,不等式$2x≤{f_2}(x)≤\frac{1}{2}{(x+1)^2}$恒成立,求f2(-1)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用更相减损术得111与148的最大公约数为(  )
A.1B.17C.23D.37

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,三棱锥P-ABC中,△PAB是正三角形,E是AB的中点,AB⊥BC,平面PAB⊥平面ABC.若AB=2,BC=$\sqrt{2}$,则点A到平面PEC的距离是$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在四边形ABCD中,$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$,对角线AC与BD交于点O,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,用$\overrightarrow{a}$和$\overrightarrow{b}$表示$\overrightarrow{AB}$和$\overrightarrow{AD}$.

查看答案和解析>>

同步练习册答案