精英家教网 > 高中数学 > 题目详情

【题目】某淘宝商城在2017年前7个月的销售额 (单位:万元)的数据如下表,已知具有较好的线性关系.

1关于的线性回归方程;

2分析该淘宝商城2017年前7个月的销售额的变化情况,并预测该商城8月份的销售额.

:回归直线的斜率和截距的最小二乘估计公式分别为:

.

【答案】(1).(2)126万元.

【解析】试题分析:(1)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出的值,再求出的值,写出线性回归方程.
(2)根据(1)求出的线性回归方程,代入所给的的值,预测预测该商城8月份的销售额.

试题解析:(1)由所给数据计算得

.

所求回归方程为.

(2)由(1)知, ,故前7个月该淘宝商城月销售量逐月增加,平均每月增加10万.

,代入(1)中的回归方程, .

故预测该商城8月份的销售额为126万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校10位同学组成的志愿者组织分别由李老师和杨老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和杨老师分别将各自活动通知的信息独立、随机地发给4位同学且所发信息都能收到.则甲同学收到李老师或杨老师所发活动通知信息的概率为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一张坐标纸上涂着圆E 及点P(1,0),折叠此纸片,使P与圆周上某点P'重合,每次折叠都会留下折痕,设折痕与直线EP'交于点M
(1)求 的轨迹 的方程;
(2)直线 C的两个不同交点为AB , 且l与以EP为直径的圆相切,若 ,求△ABO的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题: ①已知随机变量X~N(0,σ2),若P(|X|<2)=a,则P(X>2)的值为
②设a、b∈R,则“log2a>log2b”是“2ab>1”的充分不必要条件;
③函数f(x)= ﹣( x的零点个数为1;
④命题p:n∈N,3n≥n2+1,则¬p为n∈N,3n≤n2+1.
其中真命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点为F1(﹣ ,0),F2 ,0),M是椭圆上一点,若 =0,| || |=8.
(1)求椭圆的方程;
(2)点P是椭圆上任意一点,A1、A2分别是椭圆的左、右顶点,直线PA1 , PA2与直线x= 分别交于E,F两点,试证:以EF为直径的圆交x轴于定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于的一元二次方程

(1)若是从0,1,2,3四个数中任取的一个数, 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;

(2)若时从区间上任取的一个数, 是从区间上任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数,定义运算“*”:,设,且关于的方程为恰有三个互不相等的实数根,则的取值范围是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形SABC中,∠B=∠C= ,D为边SC上的点,且AD⊥SC,现将△SAD沿AD折起到达PAD的位置(折起后点S记为P),并使得PA⊥AB.
(1)求证:PD⊥平面ABCD;
(2)已知PD=AD,PD+AD+DC=6,G是AD的中点,当线段PB取得最小值时,则在平面PBC上是否存在点F,使得FG⊥平面PBC?若存在,确定点F的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 ,以原点为圆心,双曲线的实半轴长为半径的圆与双曲线的两条渐近线相交于 四点,四边形 的面积为 ,则双曲线的离心率为( )
A.
B.2
C.
D.4

查看答案和解析>>

同步练习册答案