精英家教网 > 高中数学 > 题目详情
将数列{an}中的所有项按第一行排三项,以下每一行比上一行多一项的规则排成如下数表:
记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:
(1)在数列{bn}中,b1=1,对于任何n∈N*,都有(n+1)bn+1-nbn=0;
(2)表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列;
(3),请解答以下问题:
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)求上表中第k(k∈N*)行所有项的和S(k);
(Ⅲ)若关于x的不等式上有解,求正整数k的取值范围。
解:(Ⅰ)由(n+1)bn+1-nbn=0,得{nbn}为常数列,
故nbn=1·b1=1,
所以
(Ⅱ)因为3+4+5+…+11=63,
所以表中第一行至第九行共含有数列{an}的前63项,
a66在表中第十行第三列,故a66=b10·q2

∴q=2,
故S(k)=
(Ⅲ)函数上是减函数,
故f(x)的最小值为
若关于x的不等式上有解,
设m(k)=
则必须
m(k+1)-m(k)=
m(1)=m(2)=8,
函数m(k)在k>2的自然数集上单调递增,
,m(8)=128,
所以k的取值范围是大于7的一切正整数。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网将数列{an}中的所有项按每一行比上一行多一项的规则排成如下表:
记表中的第一列数a1,a2,a4,a7,…,构成的数列为{bn},b1=a1=1,Sn为数列{bn}的前n项和,且满足
2bn
bnSn-
S
2
n
=1(n≥2)

(1)求证数列{
1
Sn
}
成等差数列,并求数列{bn}的通项公式;
(2)上表中,若a81项所在行的数按从左到右的顺序构成等比数列,且公比q为正数,求当a81=-
4
91
时,公比q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知整数数列{an}满足:a1=1,a2=2,且2an-1<an-1+an+1<2an+1(n∈N,n≥2).
(1)求数列{an}的通项公式;
(2)将数列{an}中的所有项依次按如图所示的规律循环地排成如下三角形数表:
精英家教网

依次计算各个三角形数表内各行中的各数之和,设由这些和按原来行的前后顺序构成的数列为{bn},求b5+b100的值;
(3)令cn=2+ban+b•2an-1(b为大于等于3的正整数),问数列{cn}中是否存在连续三项成等比数列?若存在,求出所有成等比数列的连续三项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表.记表中第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1.Sn为数列{bn}的前n项和,且满足2bn=bnSn-Sn2(n≥2,n∈N*).
(1)证明数列{
1
Sn
}是等差数列,并求数列{bn}的通项公式;
(2)图中,若从第三行起,每一行中的数按从左到右的顺序构成等比数列,且公比为同一个正数.当a81=-
4
91
时,求上表中第k(k≥3)行所有数的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

将数列{an}中的所有项按每一行比上一行多一项的规则排成如下表:
记表中的第一列数a1,a2,a4,a7,…,构成的数列为{bn},b1=a1=1,Sn为数列{bn}的前n项和,且满足数学公式
(1)求证数列数学公式成等差数列,并求数列{bn}的通项公式;
(2)上表中,若a81项所在行的数按从左到右的顺序构成等比数列,且公比q为正数,求当数学公式时,公比q的值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省淮安市洪泽中学高考数学模拟试卷(3)(解析版) 题型:解答题

已知整数数列{an}满足:a1=1,a2=2,且2an-1<an-1+an+1<2an+1(n∈N,n≥2).
(1)求数列{an}的通项公式;
(2)将数列{an}中的所有项依次按如图所示的规律循环地排成如下三角形数表:


依次计算各个三角形数表内各行中的各数之和,设由这些和按原来行的前后顺序构成的数列为{bn},求b5+b100的值;
(3)令(b为大于等于3的正整数),问数列{cn}中是否存在连续三项成等比数列?若存在,求出所有成等比数列的连续三项;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案