【题目】下列命题中,正确的个数是__________.(1)已知,则“”是“”的充分不必要条件;(2)已知,则“”是“”的必要不充分条件;(3)命题“p或q”为真命题,则“命题p”和“命题q”均为真命题;(4)命题“若,则”的逆否命题是真命题.
科目:高中数学 来源: 题型:
【题目】如图,椭圆:的左、右焦点分别为,轴,直线交轴于点,,为椭圆上的动点,的面积的最大值为1.
(1)求椭圆的方程;
(2)过点作两条直线与椭圆分别交于且使轴,如图,问四边形的两条对角线的交点是否为定点?若是,求出定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调査.经统计这100位居民的网购消费金额均在区间内,按,,,,,分成6组,其频率分布直方图如图所示.
(1)估计该社区居民最近一年来网购消费金额的中位数;
(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的列联表,并判断有多大把握认为“网购迷与性别有关系”;
男 | 女 | 合计 | |
网购迷 | 20 | ||
非网购迷 | 45 | ||
合计 | 100 |
(3)调査显示,甲、乙两人每次网购采用的支付方式相互独立,两人网购时间与次数也互不. 影响.统计最近一年来两人网购的总次数与支付方式,所得数据如下表所示:
网购总次数 | 支付宝支付次数 | 银行卡支付次数 | 微信支付次数 | |
甲 | 80 | 40 | 16 | 24 |
乙 | 90 | 60 | 18 | 12 |
将频率视为概率,若甲、乙两人在下周内各自网购2次,记两人采用支付宝支付的次数之和为,求的数学期望.
附:观测值公式:
临界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一批草莓中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
须数(个) | 10 | 5 | 20 | 15 |
(1)根据频数分布表计算草莓的重量在的频率;
(2)用分层抽样的方法从重量在和的草莓中共抽取5个,其中重量在的有几个?
(3)从(2)中抽出的5个草莓中任取2个,求重量在和中各有1个的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记无穷数列的前n项中最大值为,最小值为,令,数列的前n项和为,数列的前n项和为.
(1)若数列是首项为2,公比为2的等比数列,求;
(2)若数列是等差数列,试问数列是否也一定是等差数列?若是,请证明;若不是,请举例说明;
(3)若,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com