精英家教网 > 高中数学 > 题目详情
18.若l∩α=A,b?α,则1与b的位置关系为相交或异面.

分析 由已知条件,A∈b,l与b相交;A∉b,l与b异面,即可得出结论.

解答 解:∵l∩α=A,b?α,
∴A∈b,l与b相交;A∉b,l与b异面,
∴l与b相交或异面.
故答案为:相交或异面.

点评 本题考查空间中直线与直线、直线与平面的位置关系,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=$\frac{3}{2}$,an+1=2-$\frac{1}{{a}_{n}}$.
(1)求$\frac{1}{{a}_{1}-1}$的值;
(2)证明:数列{$\frac{1}{{a}_{n}-1}$}为等差数列,并求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)=$\frac{1}{1+{x}^{2}}$+x3${∫}_{0}^{1}$f(x)dx,则${∫}_{0}^{1}$f(x)dx=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.Rt△ABC中.|AB|=2a(a>0),求直角顶点C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在正六棱柱的各个面所在的平面中,有4对互相平行,与一个侧面所在平面相交的有4个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知下列命题:
①若a>0,则方程ax2+2x=0有解;
②“等腰三角形都相似”的逆命题;
③“若x-$\frac{3}{2}$是有理数,则x是无理数”的逆否命题;
④“若a>1,b>1,则a-b>2”的否命题.
其中真命题的序号是①.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知方程$\frac{{x}^{2}}{2-k}$+$\frac{{y}^{2}}{k-1}$=1表示双曲线,求k的取值范围,并写出焦点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知等边三角形ABC的边长为2,点D,E分别为AB,BC的中点,且AE∩CD=F,点H为边AC上的一点,且$\overrightarrow{AH}$=$λ\overrightarrow{AC}$(0<λ<1),当$\overrightarrow{HF}$•$\overrightarrow{HD}$=1时,实数λ=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数y=f(x)是定义在R上的偶函数,在(-∞,0]上单调递减,且有f(2)=0,则使得(x-1)•f(log3x)<0的x的范围为(  )
A.(1,2)B.$(0,\frac{1}{9})∪(9,+∞)$C.$(0,\frac{1}{9})∪(1,9)$D.$(\frac{1}{9},9)$

查看答案和解析>>

同步练习册答案