精英家教网 > 高中数学 > 题目详情
16.已知数列{an}满足anan+1=3n,n=1,2,3,…,且a1=1.
(1)求证:当n≥2时,总有$\frac{{a}_{n+1}}{{a}_{n-1}}$=3;
(2)数列{bn}满足bn=$\left\{\begin{array}{l}{lo{g}_{3}{a}_{n},n为奇数}\\{\frac{1}{{a}_{n}},n为偶数}\end{array}\right.$,求{bn}的前2n项的和S2n

分析 (1)当n≥2时,anan+1=3n,${a}_{n-1}{a}_{n}={3}^{n-1}$,两式相除即可证明;
(2)由anan+1=3n,且a1=1.可得a2=3.由(1)可得:数列{an}的奇数项与偶数项分别成等比数列,首项分别为1,3;公比都为3.分别利用等比数列的通项公式可得:a2n-1=3n-1,a2n=3n.可得a1a3…a2n-1=${3}^{\frac{n(n-1)}{2}}$.$\frac{1}{{a}_{2}}+\frac{1}{{a}_{4}}+…+\frac{1}{{a}_{2n}}$=$\frac{1}{3}+\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n}}$,再利用等比数列的前n项和公式即可得出.

解答 (1)证明:当n≥2时,anan+1=3n,${a}_{n-1}{a}_{n}={3}^{n-1}$,∴$\frac{{a}_{n+1}}{{a}_{n-1}}$=3;
(2)解:∵anan+1=3n,且a1=1.
∴a2=3.
由(1)可得:数列{an}的奇数项与偶数项分别成等比数列,首项分别为1,3;公比都为3.
∴a2n-1=3n-1,a2n=3n
∵bn=$\left\{\begin{array}{l}{lo{g}_{3}{a}_{n},n为奇数}\\{\frac{1}{{a}_{n}},n为偶数}\end{array}\right.$,
∴a1a3…a2n-1=30+1+…+(n-1)=${3}^{\frac{n(n-1)}{2}}$.
$\frac{1}{{a}_{2}}+\frac{1}{{a}_{4}}+…+\frac{1}{{a}_{2n}}$=$\frac{1}{3}+\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n}}$=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$=$\frac{1}{2}$-$\frac{1}{2×{3}^{n}}$.
∴{bn}的前2n项的和S2n=(log3a1+log3a3+…+log3a2n-1)+$(\frac{1}{{a}_{2}}+\frac{1}{{a}_{4}}+…+\frac{1}{{a}_{2n}})$
=log3(a1a3…a2n-1)+$(\frac{1}{{a}_{2}}+\frac{1}{{a}_{4}}+…+\frac{1}{{a}_{2n}})$
=$\frac{n(n-1)}{2}$+$\frac{1}{2}$-$\frac{1}{2×{3}^{n}}$.

点评 本题考查了分段数列的求和问题、等差数列与等比数列的通项公式及其前n项和公式、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列四组函数,表示同一函数的是(  )
A.$f(x)=\sqrt{x^2}$,g(x)=xB.$f(x)=\sqrt{{x^2}-4},g(x)=\sqrt{x+2}\sqrt{x-2}$
C.$f(x)=x,g(x)=\frac{x^2}{x}$D.f(x)=|x+1|,g(x)=$\left\{\begin{array}{l}{x+1,x≥-1}\\{-x-1,x-1}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列说法正确的个数为(  )
①在线性回归模型中,R2表示解释变量对于预报变量变化的贡献率,R2越接近于1,表示回归效果越好;
②在2×2列联表中,|ad-bc|的值越大,说明两个分类变量之间的关系越弱;
③命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
④设a,b∈R,则“a>b”是“a|a|>b|b|”的充要条件.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,n+1个上底、两腰皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P1M1N1N2的面积为S1,四边形P2M2N2N3的面积为S2,…,四边形PnMnNnNn+1的面积为Sn,通过逐一计算S1,S2,…,可得Sn=$\frac{3\sqrt{3}}{4}-\frac{\sqrt{3}}{8n+4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=$\frac{|x|lg|x|}{x}$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(ax+$\frac{9y}{x}$-3)5的展开式中,所有项的系数的和为243,则实数a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列图象中,可能是函数y=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$图象的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列各角中与$-\frac{π}{3}$终边相同的是(  )
A.$-\frac{5π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{{x}^{2}-ax+b}{{e}^{x}}$经过点(0,3),且在该点处的切线与x轴平行
(1)求a,b的值;
(2)若x∈(t,t+2),其中t>-2,讨论函数y=f(x)的单调区间.

查看答案和解析>>

同步练习册答案