精英家教网 > 高中数学 > 题目详情
椭圆C的中心在坐标原点,焦点在x轴上,该椭圆经过点且离心率为
(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.
【答案】分析:(1)根据椭圆的方程和简单几何性质,使用待定系数法即可;
(2)要证明直线系y=kx+m过定点,就要找到其中的参数k,m之间的关系,把双参数化为但参数问题解决,这只要根据直线l:y=kx+m与椭圆C相交A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点即可,这个问题等价于椭圆的右顶点与A,B的张角是直角.
解答:解:(1)椭圆的标准方程为(4分)
(2)设A(x1,y1),B(x2,y2),得:(3+4k2)x2+8kmx+4(m2-3)=0,
∵△>0,∴3+4k2-m2>0,
(6分)
∵以AB为直径的圆过椭圆C的右顶点,∴kAD•kBD=-1,
∴y1y2+x1x2-2(x1+x2)+4=0,∴7m2+16mk+4k2=0,
∴m1=-2k,k,且均满足3+4k2-m2>0,(9分)
当m1=-2k时,l的方程为y=k(x-2),则直线过定点(2,0)与已知矛盾
时,l的方程为,则直线过定点
∴直线l过定点,定点坐标为(12分)
点评:本题考查圆锥曲线与方程.直线系过定点时,必需是直线系中的参数为但参数,对于含有双参数的直线系,就要找到两个参数之间的关系把直线系方程化为单参数的方程,然后把x,y当作参数的系数把这个方程进行整理,使这个方程关于参数无关的成立的条件就是一个关于x,y的方程组,以这个方程的解为坐标的点就是直线系过的定点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线y=
1
4
x2
的焦点,离心率为
2
5
5

(1)求椭圆C的标准方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若
MA
=λ1
AF
MB
=λ2
BF
,求证:λ12=-10.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.
(1)求椭圆C的标准方程;
(2)D为椭圆C的右顶点,设A是椭圆上异于D的一动点,作AD的垂线交椭圆与点B,求证:直线AB过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点O,焦点在x轴上,离心率为e=
1
2
,P为椭圆上一动点.F1、F2分别为椭圆的左、右焦点,且△PF1F2面积的最大值为
3

(I)求椭圆C的方程;
(II)设直线l与圆x2+y2=1相切且与椭圆C相交于A、B两点,求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上且过点P(
3
1
2
)
,离心率是
3
2

(1)求椭圆C的标准方程;
(2)直线l过点E(-1,0)且与椭圆C交于A,B两点,若|EA|=2|EB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,左顶点A(-2,0),离心率e=
1
2
,F为右焦点,过焦点F的直线交椭圆C于P、Q两点(不同于点A).
(Ⅰ)求椭圆C的方程;
(Ⅱ)当|PQ|=
24
7
时,求直线PQ的方程.

查看答案和解析>>

同步练习册答案