精英家教网 > 高中数学 > 题目详情

如图,为圆的直径,点在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且.
(Ⅰ)求证:平面
(Ⅱ)设的中点为,求证:平面
(Ⅲ)设平面将几何体分割成的两个锥体的体积分别为,求的值

(1)证明: 平面平面,,
平面平面=平面,                              
平面                      …………… 2分
为圆的直径,
平面 …………………… 4分                              
(2)设的中点为,则,又
为平行四边形,        …………………… 6分
,又平面平面
平面                                     ……… 8分                                  
(3)过点平面平面
平面, ………… 10分
平面
,……………11分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,已知四棱锥P-ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,∠DAB=60°.

(1)证明:∠PBC=90°;
(2)若PB=3,求直线AB与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)四棱锥中,底面为矩形,侧面底面

(Ⅰ)证明:
(Ⅱ)设与平面所成的角为
求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在直角梯形中,,,.将沿折起,使平面平面,得到几何体,如图2所示.

(1) 求证:平面;(2) 求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分) 已知正四棱锥PABCD中,底面是边长为2 的正方形,高为M为线段PC的中点.
(Ⅰ) 求证:PA∥平面MDB
(Ⅱ) NAP的中点,求CN与平面MBD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,,AB=2.M为PD的中点.求直线PC与平面ABM所成的角的正弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平行四边形中,为线段的中线,将△沿直线翻折成△,使平面⊥平面为线的中点.
(1)求证:∥平面
(2)设为线段的中点,求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,两条异面直线AB,CD与三个平行平面α,β,γ分别相交于A,E,B及
C,F,D,又AD、BC与平面β的交点为H,G.
求证:四边形EHFG为平行四边形。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知向量a=(4,-2,-4),b=(6,-3,2),则(a+b)·(a-b)的值为______.

查看答案和解析>>

同步练习册答案