分析 可画出图形,连接AC,BD,设交于O点,连接PO,从而可以根据条件得到OB,OC,OP三直线两两垂直,可分别以这三直线为x,y,z轴,建立空间直角坐标系,可求出空间一些点的坐标,从而可得到向量$\overrightarrow{BE},\overrightarrow{PD}$的坐标,从而可以求得这两向量夹角的余弦值,从而便可得到异面直线BE与PD所成角的余弦值.
解答 解:如图,连接AC,BD,并交于O点,连接PO,根据题意知,PO⊥底面ABCD;
又底面ABCD为正方形;
∴AC⊥BD;
∴OB,OC,OP三直线两两垂直,分别以这三直线为x,y,z轴,建立空间直角坐标系,如下图所示:
根据条件可确定以下几点坐标:A(0,$-\sqrt{2}$,0),$P(0,0,\sqrt{2})$,$E(0,-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$,$B(\sqrt{2},0,0),D(-\sqrt{2},0,0)$;
∴$\overrightarrow{BE}=(-\sqrt{2},-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$,$\overrightarrow{PD}=(-\sqrt{2},0,-\sqrt{2})$;
∴$\overrightarrow{BE}•\overrightarrow{PD}=2+0-1=1$,$|\overrightarrow{BE}|=\sqrt{3},|\overrightarrow{PD}|=2$;
∴$cos<\overrightarrow{BE},\overrightarrow{PD}>=\frac{\overrightarrow{BE}•\overrightarrow{PD}}{|\overrightarrow{BE}||\overrightarrow{PD}|}$=$\frac{1}{2\sqrt{3}}=\frac{\sqrt{3}}{6}$;
∴异面直线BE与PD所成角的余弦值为$\frac{\sqrt{3}}{6}$.
故答案为:$\frac{\sqrt{3}}{6}$.
点评 考查通过建立空间直角坐标系,利用空间向量解决异面直线所成角问题的方法,能求空间点的坐标,根据点的坐标可以得出向量的坐标,向量数量积的坐标运算,以及向量夹角余弦的计算公式,清楚异面直线所成角和异面直线的方向向量夹角的关系.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {l,2,3,4,5,6} | B. | {1,2,4,6} | C. | {2,4,6} | D. | {2,3,4,5,6} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com