比较下列各组中两个值的大小 :
(1)ln0.3,ln2;
(2)loga3.1,loga5.2(a>0,且a≠1);
(3)log30.2,log40.2;
(4)log3π,logπ3.
[思路分析] (1)构造对数函数y=lnx,利用函数的单调性判断;(2)需对底数a分类讨化;(3)由于两个对数的底数不同,故不能直接比较大小,可对这两个对数分别取倒数,再根据同底对数函数的单调性比较大小;(4)构造对数函数,并借助中间量判断.
[解析] (1)因为函数y=lnx是增函数,且0.3<2,
所以ln0.3<ln2.
(2)当a>1时,函数y=logax在(0,+∞)上是增函数,
又3.1<5.2,所以loga3.1<loga5.2;
当0<a<1时,函数y=logax在(0,+∞)上是减函数,
又3.1<5.2,所以loga3.1>loga5.2.
(3)因为0>log0.23>log0.24,所以<,即log30.2<log40.2.
(4)因为函数y=log3x是增函数,且π>3,所以log3π>log33=1,
同理,1=logππ>log3π>logπ3.
科目:高中数学 来源: 题型:
(1)log31.9,log32; (2)log0.90.1,log0.92;
(3)log35,log53; (4)log23,log0.32;
(5)logaπ,loga3.141.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)log
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com