精英家教网 > 高中数学 > 题目详情
已知椭圆Γ的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,A(0,b)、B(0,-b)和Q(a,0)为Γ的三个顶点.
(1)若点M满足
AM
=
1
2
(
AQ
+
AB
)
,求点M的坐标;
(2)设直线l1:y=k1x+p交椭圆Γ于C、D两点,交直线l2:y=k2x于点E.若k1k2=-
b2
a2
,证明:E为CD的中点;
(3)设点P在椭圆Γ内且不在x轴上,如何构作过PQ中点F的直线l,使得l与椭圆Γ的两个交点P1、P2满足
PP1
+
PP2
=
PQ
PP1
+
PP2
=
PQ
?令a=10,b=5,点P的坐标是(-8,-1),若椭圆Γ上的点P1、P2满足
PP1
+
PP2
=
PQ
,求点P1、P2的坐标.
(1)∵
AM
=
1
2
(
AQ
+
AB
)

∴M是B(0,-b)和Q(a,0)的中点,
M(
a
2
,-
b
2
)

(2)由方程组
y=k1 x+p
x2
a2
+
y2
b2
=1

消y得方程(a2k12+b2)x2+2a2k1px+a2(p2-b2)=0,
因为直线l1:y=k1x+p交椭圆Γ于C、D两点,
所以△>0,即a2k12+b2-p2>0,
设C(x1,y1)、D(x2,y2),CD中点坐标为(x0,y0),设C(x1,y1)、D(x2,y2),CD中点坐标为(x0,y0),
x0 =
x1 +x2
2
=-
a2k1 p
a2
k12
 +b2
y0 =k1x0 +p=
b2 p
a2
k12
 +b2

由方程组
y=k1 x+p
y=k2 x
,消y得方程(k2-k1)x=p,
又因为k2=-
b2
a2k1

所以
x=
p
k2 -k1
=-
a2k1 p
a2
k12
 +b2
=x0
y=k2 x=
b2 p
a2
k12
 +b2
=y0

故E为CD的中点;
(3)因为点P在椭圆Γ内且不在x轴上,
所以点F在椭圆Γ内,可以求得直线OF的斜率k2
PP1
+
PP2
=
PQ
知F为P1P2的中点,
根据(2)可得直线l的斜率k1=-
b2
a2k2

从而得直线l的方程.F(1,-
1
2
)

直线OF的斜率k2=-
1
2

直线l的斜率k1=-
b2
a2k2
=
1
2

解方程组
y=
1
2
x-1
x2
100
+
y2
25
=1
,消y:x2-2x-48=0,
解得P1(-6,-4)、P2(8,3),或P1(8,3)、P2(-6,-4),.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l的方程为x=-2,且直线l与x轴交于点M,圆O:x2+y2=1与x轴交于A,B两点.
(1)过M点的直线l1交圆于P、Q两点,且圆孤PQ恰为圆周的
14
,求直线l1的方程;
(2)求以l为准线,中心在原点,且与圆O恰有两个公共点的椭圆方程;
(3)过M点作直线l2与圆相切于点N,设(2)中椭圆的两个焦点分别为F1,F2,求三角形△NF1F2面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的方程为x=-4,且直线l与x轴交于点M,圆O:x2+y2=4与x轴交于A,B两点,则以l为准线,中心在坐标原点,且与圆O恰有两个公共点的椭圆方程为
x2
4
+
y2
3
=1或
x2
8
+
y2
4
=1
x2
4
+
y2
3
=1或
x2
8
+
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的方程为
x2
4
+y2=1
,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+
2
与双曲线C2恒有两个不同的交点A和B,且
OA
OB
>2
(其中O为原点),求k的范围.
(3)试根据轨迹C2和直线l,设计一个与x轴上某点有关的三角形形状问题,并予以解答(本题将根据所设计的问题思维层次评分).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x 2
4
+
y2
3
=1,过C的右焦点F的直线与C相交于A、B两点,向量
m
=(-1,-4),若向量
OA
-
OB
m
-
OF
共线,则直线AB的方程是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C的方程为
x 2
4
+
y2
3
=1,过C的右焦点F的直线与C相交于A、B两点,向量
m
=(-1,-4),若向量
OA
-
OB
m
-
OF
共线,则直线AB的方程是(  )
A.2x-y-2=0B.2x+y-2=0C.2x-y+2=0D.2x+y+2=0

查看答案和解析>>

同步练习册答案