精英家教网 > 高中数学 > 题目详情
如果在(a,b)(a<b)上的函数f(x),对于?x1,x2∈(a,b)都有f(
x1+x2
2
1
2
[f(x1)+f(x2)]
(x1≠x2),则称f(x)在(a.b)上是凹函数,设f(x)在(a,b)上可导,其函数f′(x)在(a,b)上也可导,并记[f′(x)]′=f″(x)
(1)如果f(x)在(a,b)上f″(x)>0,证明:f(x)在(a,b)上是凹函数
(2)若f(x)=(x2-2ax-a+a2)ex-lnx,用(1)的结论证明:当a<-2时f(x)在(0,+∞)上是凹函数.
分析:(1)根据在(a,b)上f''(x)>0,则f′(x)在(a,b)上是增函数,然后可证∴
x1+x2
2
x1
f(x)dx
x2
x1+x2
2
f(x)dx
,从而得到f(
x1+x2
2
)
1
2
[f(x1)+f(x2)]
,即可证得结论;
(2)先求f''(x),然后判定其符号,根据(1)的结论可证得当a<-2时f(x)在(0,+∞)上是凹函数.
解答:(1)证明:∵在(a,b)上f''(x)>0∴f′(x)在(a,b)上是增函数,不妨设x1<x2
x1+x2
2
x1
f(x)dx
x1+x2
2
x1
f(
x1+x2
2
)dx
=
x2-x1
2
f(
x1+x2
2
)

x2
x1+x2
2
f(x)dx
x2
x1+x2
2
f(
x1+x2
2
)dx
=
x2-x1
2
f(
x1+x2
2
)

x1+x2
2
x1
f(x)dx
x2
x1+x2
2
f(x)dx

f(x)
.
x1+x2
2
x1
f(x)
.
x2
x1+x2
2
从而f(
x1+x2
2
)
1
2
[f(x1)+f(x2)]
(6分)
(2)f′(x)=[x2+2(1-a)x-3a+a2]ex-
1
x

f''(x)=[x2+2(2-a)x+2-5a+a2]ex+
1
x2
(2分)
令F(x)=x2+2(2-a)x+2-5a+a2
△=4[(a-2)2-a2+5a-2]=4(a+2)
∵a<-2∴△<0                         (4分)
∴F(x)>0,从而f''(x)>0
∴f(x)在(0,+∞)上是凹函数                                   (6分)
点评:本题主要考查了定积分的应用,以及利用导数研究函数的单调性,同时考查了运算求解的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果f(x0)是函数f(x)的一个极值,称点(x0,f(x0))是函数f(x)的一个极值点.已知函数f(x)=(ax-b)e
a
x
(x≠0且a≠0)
(1)若函数f(x)总存在有两个极值点A,B,求a,b所满足的关系;
(2)若函数f(x)有两个极值点A,B,且存在a∈R,求A,B在不等式|x|<1表示的区域内时实数b的范围.
(3)若函数f(x)恰有一个驻点A,且存在a∈R,使A在不等式
|x|<1
|y|<e2
表示的区域内,证明:0≤b<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•浦东新区一模)对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由.
第一组:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)

第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)设f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函数h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求实数t的取值范围.
(3)设f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2且x1+x2=1,试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

“要使函数f(x)≥0成立,只要x不在区间[a,b]内就可以了”的意思是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数图象上的不同两点A(x1,y1),B(x2,y2),如果在函数图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点m处的切线l∥AB,则称AB存在“伴侣切线”.特别地,当X0=
x1+x22
时,又称AB存在“中值伴侣切线”.
(1)函数f(x)=x2图象上两点A(1,1),B(3,9),求AB的“中值伴侣切线”;
(2)若函数f(x)=lnx,试问:在函数f(x)上是否存在两点A、B使得它存在“中值伴侣切线”,若存在,求出A、B的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案