精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为为参数),以平面直角坐标系的原点为极点,正半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.

(1)求直线和曲线的直角坐标方程,并指明曲线的形状;

(2)设直线与曲线交于两点, 为坐标原点,且,求.

【答案】(1) ,曲线是圆心为,半径的圆;(2) .

【解析】试题分析:(1)由消去参数,得直线的直角坐标方程为,由极坐标和直角坐标的互化公式可得曲线的直角坐标方程.;

(2)联立直线与曲线的方程,消去,得

对应的极径分别为 ,GV韦达定理可得 .的值.

试题解析:(1)由消去参数,得

,得

所以曲线的直角坐标方程为

.

即曲线是圆心为,半径的圆.

(2)联立直线与曲线的方程,得,消去,得

对应的极径分别为 ,则

所以 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有下列命题:①边长为1的正四面体的内切球半径为

②正方体的内切球、棱切球(正方体的每条棱都与球相切)、外接球的半径之比为1:

③棱长为1的正方体ABCD-A1B1C1D1的内切球被平面A1BD截得的截面面积为

其中正确命题的序号是______(请填所有正确命题的序号);

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对于曲线上任意点处的切线,总存在上处的切线,使得,则实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018衡水金卷(二)如图,矩形中, 于点

I)若点的轨迹是曲线的一部分,曲线关于轴、轴、原点都对称,求曲线的轨迹方程;

II)过点作曲线的两条互相垂直的弦,四边形的面积为,探究是否为定值?若是,求出此定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,直线的极坐标方程为,且点在直线上.

(1)求的值及直线的直角坐标方程;

(2)圆的极坐标方程为,试判断直线与圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过(25),(﹣21)两点,并且圆心在直线yx.

1)求圆的标准方程;

2)求圆上的点到直线3x4y+230的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点, 轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)已知直线与曲线交于 两点,与轴交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. 是椭圆的右顶点与上顶点,直线与椭圆相交于两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)当四边形面积取最大值时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 中点,且平面 .已知.

(1)求直线所成角;

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案