精英家教网 > 高中数学 > 题目详情

如图,已知E、F分别是三棱锥A-BCD的侧棱AB、AD的中点,
求证:EF∥平面BCD.

证明:∵E、F分别是三棱锥A-BCD的侧棱AB、AD的中点,
∴EF∥BD,
又∵EF?平面BCD,BDF?平面BCD,
∴EF∥平面BCD.
分析:利用三角形的中位线定理和线面平行的判定定理即可证明.
点评:熟练掌握利用三角形的中位线定理证明线线平行和线面平行的判定定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:044

如图,已知EFG分别为正方体ABCD-A1B1C1D1ABB1C1DD1上的一点,试过EFG三点作正方体ABCD-A1B1C1D1的截面.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

如图,已知EFG分别为正方体ABCD-A1B1C1D1ABB1C1DD1上的一点,试过EFG三点作正方体ABCD-A1B1C1D1的截面.

查看答案和解析>>

科目:高中数学 来源:导学大课堂选修数学2-1苏教版 苏教版 题型:047

如图,已知E、F、G、H、K、L分别为正方体AC1的棱,AA1、BB、BC、CC1、C1D1、A1D1的中点,求证:EF、GH、KL三线共面.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知EFGHKL分别为正方体AC1的棱AA1ABBCCC1C1D1A1D1的中点.

求证:EFGHKL三线共面.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知E、F、G、H分别为空间四边形ABCD的边AB、BC、CD、DA的中点.

(1)求证:E、F、G、H四点共面;

(2)求证:BD//平面EFGH;

(3)设M是EG和FH的交点,求证:对于空间任意一点O有

.

查看答案和解析>>

同步练习册答案