【题目】已知圆点,直线与圆交于两点,点在直线上且满足.若,则弦中点的横坐标的取值范围为_____________.
【答案】
【解析】
①当直线斜率不存在时,易求得;②当直线斜率存在时,设其方程为,利用直线与圆有交点可求得;将直线方程与圆方程联立得到韦达定理的形式;根据和可整理得到,,,满足的方程,代入韦达定理的结论整理可得;当时,知;当时,可将表示为关于的函数,利用对号函数的性质可求得值域,即为所求的范围;综合两类情况可得最终结果.
设,
①当直线斜率不存在时,直线方程为,此时,,
,,,,
满足,此时;
②当直线斜率存在时,设其方程为:,
与圆有两个不同交点,,即,
由得:,
设,,
则,,
,
.
,,解得:,
由得:,
整理得:,
,整理得:,
当时,;
当时,,代入式得:,
解得:,
,
,,
当时,单调递增,
在上单调递减,
,
综上所述:弦中点的横坐标的取值范围为.
故答案为:.
科目:高中数学 来源: 题型:
【题目】为配合“2019双十二”促销活动,某公司的四个商品派送点如图环形分布,并且公司给四个派送点准备某种商品各50个.根据平台数据中心统计发现,需要将发送给四个派送点的商品数调整为40,45,54,61,但调整只能在相邻派送点进行,每次调动可以调整1件商品.为完成调整,则( )
A.最少需要16次调动,有2种可行方案
B.最少需要15次调动,有1种可行方案
C.最少需要16次调动,有1种可行方案
D.最少需要15次调动,有2种可行方案
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在四棱锥中,底面是边长为的正方形,是正三角形,CD平面PAD,E,F,G,O分别是PC,PD,BC,AD 的中点.
(Ⅰ)求证:PO平面;
(Ⅱ)求平面EFG与平面所成锐二面角的大小;
(Ⅲ)线段上是否存在点,使得直线与平面所成角为,若存在,求线段的长度;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大学就业部从该大学2018年已就业的大学本科毕业生中随机抽取了100人进行月薪情况的问卷调查,经统计发现,他们的月薪收入在3000元到10000元之间,具体统计数据如表:
月薪(百万) | |||||||
人数 | 2 | 15 | 20 | 15 | 24 | 10 | 4 |
(1)经统计发现,该大学2018届的大学本科毕业生月薪(单位:百元)近似地服从正态分布,其中近似为样本平均数(每组数据取区间的中点值).若落在区间的左侧,则可认为该大学本科生属“就业不理想”的学生,学校将联系本人,咨询月薪过低的原因,为以后的毕业生就业提供更好的指导意见.现该校2018届大学本科毕业生张茗的月薪为3600元,试判断张茗是否属于“就业不理想”的学生;
(2)①将样本的频率视为总体的概率,若大学领导决定从大学2018届所有本毕业生中任意选取5人前去探访,记这5人中月薪不低于8000元的人数为,求的数学期望与方差;
②在(1)的条件下,中国移动赞助了大学的这次社会调查活动,并为这次参与调查的大学本科毕业生制定了赠送话费的活动,赠送方式为:月薪低于的获赠两次随机话费,月薪不低于的获赠一次随机话费;每次赠送的话费及对应的概率分别为:
赠送话费(单位:元) | 50 | 100 | 150 |
概率 |
则张茗预期获得的话费为多少元?(结果保留整数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在区间上有且仅有2个零点,对于下列4个结论:①在区间上存在,满足;②在区间有且仅有1个最大值点;③在区间上单调递增;④的取值范围是,其中所有正确结论的编号是( )
A.①③B.①③④C.②③D.①④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com