精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=asinxcos2x+1(a,b∈R).

(1)当a=1,且 时,求f(x)的值域;

(2)若存在实数 使得成立,求实数a的取值范围.

【答案】(1);(2)

【解析】分析:(1)根据三角函数的诱导公式得到f(x)=2+sinx,再由二次函数解析式,讨论轴和区间的关系得到最值;(2)存在实数x使得函数|f(x)|≥a2成立,∴存在t[﹣1,1]使得函数|2t2+at|≥a2成立,即存在t[﹣1,1]使得2t2+at﹣a2≥02t2+at+a2≤0成立.

详解:

(1)当a=1时,f(x)=sinx﹣cos2x+1=sinx﹣(1﹣2sin2x)+1=2sin2x+sinx

=2

时,sinx∈[﹣1,1],

∴sinx=﹣时,f(x)取得最小值﹣,sinx=1时,f(x)取得最大值3,

f(x)的值域为[﹣,3];

(2)f(x)=asinx﹣cos2x+1=asinx+2sin2x=2sin2x+asinx,

设t=sinx,则t∈[﹣1,1],代入原函数得y=2t2+at,

存在实数x使得函数|f(x)|≥a2成立,

存在t∈[﹣1,1]使得函数|2t2+at|≥a2成立,

存在t∈[﹣1,1]使得2t2+at﹣a2≥0或2t2+at+a2≤0成立,

当a=0时,2t20或2t20成立,

当a0时,由于2t2+at+a2≤0的△=﹣7a2<0,不等式无解,

由2t2+at﹣a2≥0得(2t﹣a)(t+a)≥0,

当a0时,2t2+at﹣a2≥0的解集是(﹣∞,﹣a]∪[,+∞),

由题意可得,1或﹣a﹣1,解得0<a≤2,

当a0时,2t2+at﹣a2≥0的解集是(﹣∞,]∪[﹣a,+∞),

由题意可得,﹣a1或﹣1,解得﹣2≤a<0,

综上,实数a的取值范围是[﹣2,2].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,底面为矩形, 平面 ,点的中点.

)求证: 平面

)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线 ,曲线C2的参数方程为: ,(θ为参数),以O为极点,x轴的正半轴为极轴的极坐标系.
(1)求C1 , C2的极坐标方程;
(2)射线 与C1的异于原点的交点为A,与C2的交点为B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列满足.

(1)求

(2)先猜想出的一个通项公式,再用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1的方程为3x+4y﹣12=0.

(1)若直线l2与l1平行,且过点(﹣1,3),求直线l2的方程;

(2)若直线l2与l1垂直,且l2与两坐标轴围成的三角形面积为4,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1的方程为3x+4y﹣12=0.

(1)若直线l2与l1平行,且过点(﹣1,3),求直线l2的方程;

(2)若直线l2与l1垂直,且l2与两坐标轴围成的三角形面积为4,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点与点都在椭圆上.

(1)求椭圆的方程;

(2)若的左焦点、左顶点分别为,则是否存在过点且不与轴重合的直线 (记直线与椭圆的交点为),使得点在以线段为直径的圆上;若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图 1,在直角梯形中, ,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直, 的中点,如图 2.

(1)求证: 平面

(2)求证: 平面

(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l:ax+ y﹣1=0与x,y轴的交点分别为A,B,直线l与圆O:x2+y2=1的交点为C,D.给出下列命题:p:a>0,SAOB= ,q:a>0,|AB|<|CD|.则下面命题正确的是(
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q

查看答案和解析>>

同步练习册答案