精英家教网 > 高中数学 > 题目详情
1.已知集合A={x|3<x<6},B={x|2<x<9},
(Ⅰ)求A∩B,(∁RA)∪(∁RB),
(Ⅱ)已知C={x|a<x<a+1},若B∪C=B,求实数a的取值范围.

分析 (Ⅰ)直接由交集运算求A∩B,利用(∁RA)∪(∁RB)=∁R(A∩B)求得(∁RA)∪(∁RB);
(Ⅱ)由B∪C=B,得C⊆B,转化为两集合端点值间的关系得答案.

解答 解(Ⅰ)∵A={x|3<x<6},B={x|2<x<9},
∴A∩B={x|3<x<6},
∴(∁RA)∪(∁RB)=∁R(A∩B)={x|x≤3或x≥6};
(Ⅱ)∵B∪C=B,∴C⊆B,
∴$\left\{\begin{array}{l}{a≥2}\\{a+1≤9}\end{array}\right.$,解得2≤a≤8.
∴实数a的取值范围是[2,8].

点评 本题考查交、并、补集的混合运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,已知四棱锥P-ABCD,底面ABCD为边长为2对的菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(1)判定AE与PD是否垂直,并说明理由;
(2)若PA=2,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.将函数f(x)=log2(3x+2)-1的图象向上平移1个单位,再向右平移2个单位后得到函数g(x),那么g(x)的表达式为g(x)=log2(3x-4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在等比数列{an}中,a4=2,a5=5,则lga1+lga2+…+lga8等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,能用二分法求零点的是(  )
A.f(x)=log2xB.f(x)=-x2C.f(x)=x2D.f(x)=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知α:$a≤x≤a+\frac{1}{2}$,β:1-2a<x<3a+2,若α是β的充分不必要条件,则实数a的取值范围是($\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,长轴为2$\sqrt{3}$,则椭圆C的方程为(  )
A.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{3}$+y2=1C.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1D.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出下列命题:①函数f(x)=4cos(2x+$\frac{π}{3}$)+1的一个对称中心为(-$\frac{5π}{12}$,0);②函数y=f(1-x)与y=f(x-1)的图象关于x=0对称;③命题“?x>0,x2+2x-3>0”的否定是“?x≤0,x2+2x-3≤0”;④若α,β均为第一象限角,且α>β,则sinα>sinβ,其中正确命题的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将$\root{3}{2^2}$化成分数指数幂为(  )
A.${2^{\frac{3}{2}}}$B.$2^{-\frac{1}{2}}$C.$2^{\frac{1}{3}}$D.$2^{\frac{2}{3}}$

查看答案和解析>>

同步练习册答案