精英家教网 > 高中数学 > 题目详情
3.在△ABC中,AB=AC,D为BC边上一点,E为AD上一点,且满足∠BDE=2∠CED=∠BAC.求证:BD=2CD.

分析 作DO∥AB交AC于O,取F为△EDC的外接圆与AC的交点,利用△ADO∽△ABE,即得$\frac{OD}{AE}=\frac{AD}{AB}=\frac{AD}{AC}=\frac{AF}{AE}$,即可得出结论.

解答 证明:作DO∥AB交AC于O.
则由AB=AC易知OD=OC,且∠DOC=∠A=2∠CED,
所以O为△EDC的外心,
取F为△EDC的外接圆与AC的交点,则OF=OC=OD,∠ACE=∠ADF.
所以△ACE∽△ADF,即有AD/AC=AF/AE.
再由DO∥AB,∠ADO=∠BAE,∠AOD=180-∠DOC=180°-∠A=180°-∠BED=∠AEB,
所以△ADO∽△ABE,即得$\frac{OD}{AE}=\frac{AD}{AB}=\frac{AD}{AC}=\frac{AF}{AE}$.
故AF=OD=OC=CF,从而AO=2OC.
由DO∥AB得:BD=2CD.

点评 本题考查三角形相似的证明,考查比例的性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知圆C:(x+3)2+(y-4)2=4.若直线l过点A(-1,0),且与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知两点P1(2,7),P2(6,5),则以线段P1P2为直径的圆的标准方程是(  )
A.(x-4)2+(y-6)2=5B.(x-4)2+(y-6)2=10C.(x-2)2+(y-1)2=5D.(x-6)2+(y-4)2=25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知正三棱锥的侧棱两两互相垂直,且都等于a,求棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知cos(α-β)=-$\frac{4}{5}$,sin(α+β)=-$\frac{3}{5}$,$\frac{π}{2}$<α-β<π,$\frac{3π}{2}$≤α+β<2π,求cos2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)是定义在R上的函数,对任意的x、y∈R,都有f(x)f(y)=2f(x+y),且当x>0时,f(x)>2.
(1)求f(0)的值;
(2)证明:f(x)>0对任意x∈R恒成立;
(3)解关于θ的不等式f(tanθ)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设A={x|x=4k+1,k∈Z},B={x|x=4k-3,k∈Z},则集合A与B的关系为A=B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于非空实数集A,定义A*={z|对任意x∈A,z≥x}.设非空实数集C⊆D?(-∞,1].现给出以下命题:
①对于任意给定符合题设条件的集合C,D,必有D*⊆C*;
②对于任意给定符合题设条件的集合C,D,必有C*∩D≠∅;
③对于任意给定符合题设条件的集合C,D,必有C∩D*=∅.
以上命题正确的是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在区间[1,5]上,f(x)=x2-mx+4的图象恒在y=x的图象上方,则m的取值范围是(-∞,3).

查看答案和解析>>

同步练习册答案