ÏÂÁÐ˵·¨£º
¢Ùº¯Êýy=|x+2|µÄµ¥µ÷ÔöÇø¼äÊÇ[2£¬+¡Þ£©£»
¢ÚÉèf£¨x£©ÊÇRÉϵÄÈÎÒ⺯Êý£¬Ôòf£¨x£©+f£¨-x£©ÊÇżº¯Êý£¬f£¨x£©-f£¨-x£©ÊÇÆ溯Êý£»
¢ÛÒÑÖªA={x|x2=1}£¬B={x|mx-1=0}£¬ÈôA¡ÉB=B£¬ÔòʵÊýmÈ¡Öµ¼¯ºÏÊÇ{1£¬-1}£»
¢Üº¯Êýf£¨x£©=-x|x|+1¶ÔÓÚ¶¨ÒåÓòRÄÚÈÎÒâx1£¬x2£¬µ±x1¡Ùx2ʱ£¬ºãÓÐ
f(x1)-f(x2)
x2-x1
£¾0£»
¢ÝÒÑÖªf£¨x£©=2x2+1ÊǶ¨ÒåÔÚRÉϵĺ¯Êý£¬Ôò´æÔÚÇø¼äI£¬Âú×ãI⊆R£¬Ê¹µÃ¶ÔÓÚIÉÏÈÎÒâx1£¬x2£¬µ±x1¡Ùx2ʱ£¬ºãÓÐf(
x1+x2
2
)
¡Ý
f(x1)+f(x2)
2
£®
ÆäÖÐÕýÈ·µÄÊÇ
 
£®£¨Ö»ÌîдÏàÓ¦µÄÐòºÅ£©
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺
·ÖÎö£ºÈ·¶¨º¯Êýy=|x+2|µÄµ¥µ÷ÔöÇø¼ä£¬¿ÉÅжϢ٣»¸ù¾Ýº¯ÊýÆæżÐԵĶ¨Ò壬¿ÉÅжϢڣ»¸ù¾Ý¼¯ºÏ°üº¬¹ØϵµÄ¶¨Ò壬Çó³öÂú×ãÌõ¼þµÄmÖµµÄ¼¯ºÏ£¬¿ÉÅжϢۣ»È·¶¨º¯Êýf£¨x£©=-x|x|+1µÄµ¥µ÷ÐÔ£¬¿ÉÅжϢܣ»È·¶¨º¯Êýf£¨x£©=2x2+1µÄ͹°¼ÐÔ£¬¿ÉÅжϢݣ®
½â´ð£º ½â£º¶ÔÓÚ¢Ù£¬º¯Êýy=|x+2|µÄµ¥µ÷ÔöÇø¼äÊÇ[-2£¬+¡Þ£©£¬¹Ê´íÎó£»
¶ÔÓÚ¢Ú£¬Éèf£¨x£©ÊÇRÉϵÄÈÎÒ⺯Êý£¬Ôòf£¨-x£©+f£¨x£©=f£¨x£©+f£¨-x£©£¬¹Êf£¨x£©+f£¨-x£©ÊÇżº¯Êý£¬f£¨-x£©-f£¨x£©=-[f£¨x£©-f£¨-x£©]£¬¹Êf£¨x£©-f£¨-x£©ÊÇÆ溯Êý£¬¹ÊÕýÈ·£»
¶ÔÓÚ¢Û£¬ÒÑÖªA={x|x2=1}={-1£¬1}£¬B={x|mx-1=0}£¬ÈôA¡ÉB=B£¬ÔòB⊆A£¬ÔòʵÊýmÈ¡Öµ¼¯ºÏÊÇ{1£¬-1£¬0}£¬¹Ê´íÎó£»
¶ÔÓڢܣ¬º¯Êýf£¨x£©=-x|x|+1ÊǶ¨ÒåÔÚRÉϵļõº¯Êý£¬¶ÔÓÚ¶¨ÒåÓòRÄÚÈÎÒâx1£¬x2£¬µ±x1¡Ùx2ʱ£¬ºãÓÐ
f(x1)-f(x2)
x2-x1
£¾0£¬¹ÊÕýÈ·£»
¶ÔÓڢݣ¬ÒÑÖªf£¨x£©=2x2+1ÊǶ¨ÒåÔÚRÉϵݼº¯Êý£¬Ôò´æÔÚÇø¼äI£¬Âú×ãI⊆R£¬Ê¹µÃ¶ÔÓÚIÉÏÈÎÒâx1£¬x2£¬µ±x1¡Ùx2ʱ£¬ºãÓÐf(
x1+x2
2
)
£¼
f(x1)+f(x2)
2
£¬¹Ê´íÎó£®
¹ÊÕýÈ·µÄ˵·¨ÓУº¢Ú¢Ü£¬
¹Ê´ð°¸Îª£º¢Ú¢Ü
µãÆÀ£º±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏΪÔØÌ壬¿¼²éÁ˺¯ÊýµÄµ¥µ÷ÐÔ£¬ÆæżÐÔ£¬Í¹°¼ÐÔ¼°¼¯ºÏµÄ°üº¬¹ØϵµÄ¶¨Ò壬ÄѶÈÖеµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôº¯Êýf£¨¦È£©=
4
3
•sin(¦È-5¦Ð)•cos(-
¦Ð
2
-¦È)•cos(-¦È)
sin(¦È-
3¦Ð
2
)•sin(-¦È-4¦Ð)
£¬Ôòf£¨-
¦Ð
6
£©=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijÓÃÈ˵¥Î»´Ó¼×¡¢ÒÒ¡¢±û¡¢¶¡4ÃûӦƸÕßÖÐÕÐƸ2ÈË£¬ÈôÿÃû   Ó¦Æ¸Õß±»Â¼ÓõĻú»á¾ùµÈ£¬Ôò¼×¡¢ÒÒ2ÈËÖÐÖÁÉÙÓÐ1È뱻¼Óà  µÄ¸ÅÂÊΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôC
 
3
n
=C
 
7
n
£¬£¨n¡ÊN*£©£¬ÔòC
 
2
n
=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµãA£¨-2£¬0£©£¬B£¨2£¬0£©£¬PÊÇË«ÇúÏß
x2
3
-y2=1ÉÏÈÎÒâÒ»µã£¬Ôò|PA|-|PB|=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚƽÃæÏòÁ¿
a
=£¨x1£¬y1£©£¬
b
=£¨x2£¬y2£©£¬Èô¼Ç£¼
a
£¬
b
£¾ÎªËüÃǵļнǣ¬Ôòcos£¼
a
£¬
b
£¾=
x1x2+y1y2
x12+y12
x22+y22
£¬°Ñ´Ë½áÂÛÀà±Èµ½¿Õ¼ä£¬¶ÔÓÚ¿Õ¼äÏòÁ¿
a
=£¨x1£¬y1£¬z1£©£¬
b
=£¨x2£¬y2£¬z2£©£¬Èô¼Ç£¼
a
£¬
b
£¾ÎªËüÃǵļнǣ¬Ôòcos£¼
a
£¬
b
£¾=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµ¥µ÷µÝÔöµÄµÈ±ÈÊýÁÐ{an}ÖУ¬a2•a6=16£¬a3+a5=10£¬ÔòÊýÁÐ{an}µÄÇ°nÏîºÍSn=£¨¡¡¡¡£©
A¡¢2n-2-
1
4
B¡¢2n-1-
1
2
C¡¢2n-1
D¡¢2n+1-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýy=
4-2x
£¬ÇóyµÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Óò¿·Ö×ÔÈ»Êý¹¹ÔìÈçͼµÄÊý±í£ºÓÃaij£¨i¡Ýj£©±íʾµÚiÐеÚj¸öÊý£¨i£¬j¡ÊN+£©£¬Ê¹µÃai1=aii=i£¬Ã¿ÐÐÖеÄÆäËû¸÷Êý·Ö±ðµÈÓÚÆä¡°¼ç°ò¡±ÉϵÄÁ½¸öÊýÖ®ºÍ£®ÉèµÚn£¨nΪN+£©Ðеĵڶþ¸öÊýΪbn£¨n¡Ý2£©£¬
£¨1£©Ð´³öµÚ6ÐеĵÚÈý¸öÊý£»
£¨2£©Ð´³öbn+1ÓëbnµÄ¹Øϵ²¢Çóbn£¨n¡Ý2£©£»
£¨3£©É裨bn-1£©cn=1£¨n¡Ý2£©£¬ÇóÖ¤£º1¡Üc2+c3+¡­+cn£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸