分析 (1)根据双曲线渐近线方程为y=±$\frac{4}{3}$x,设双曲线方程为y2-$\frac{16}{9}$x2=λ(λ≠0),代入点P的坐标算出λ=-16,即可得到双曲线的标准方程;
(2)由双曲线的标准方程,算出a=3、b=4且c=5,设|PF1|=d1,|PF2|=d2,则d1•d2=41,又由双曲线的几何性质知|d1-d2|=2a=6,再由△F1PF2中|F1F2|=10,利用余弦定理加以计算即可得出∠F1PF2的余弦值.
解答 解:(1)设双曲线的方程为y2-$\frac{16}{9}$x2=λ(λ≠0),
代入点P(-3$\sqrt{2}$,4),可得λ=-16,
∴所求求双曲线的标准方程为$\frac{x^2}{9}-\frac{y^2}{16}=1$
(2)设|PF1|=d1,|PF2|=d2,则d1•d2=41,
又由双曲线的几何性质知|d1-d2|=2a=6,
∴d12+d22-2d1d2=36即有d12+d22=36+2d1d2=118,
又|F1F2|=2c=10,
∴|F1F2|2=100=d12+d22-2d1d2cos∠F1PF2
∴cos∠F1PF2=$\frac{14}{41}$
点评 本题给出双曲线的渐近线,在双曲线经过定点P的情况下求它的标准方程,并依此求∠F1PF2的余弦值.着重考查了双曲线的标准方程与简单几何性质、利用余弦定理解三角形等知识,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (¬p)∧(¬q) | B. | p∨(¬q) | C. | p∧(¬q) | D. | (¬p)∧q |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,$\frac{2}{3}$] | B. | (0,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,$\frac{2}{3}$] | D. | ($\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com