精英家教网 > 高中数学 > 题目详情

【题目】

已知椭圆的左、右焦点分别为,点是椭圆的一个顶点,是等腰直角三角形.

1)求椭圆的方程;

2)设点是椭圆上一动点,求线段的中点的轨迹方程;

3)过点分别作直线交椭圆于两点,设两直线的斜率分别为

,探究:直线是否过定点,并说明理由.

【答案】123)直线过定点().

【解析】

试题(1)求椭圆方程一般利用待定系数法求解,由题意得,因此,从而2)求轨迹问题,一般根据题意选择对应方法,本题涉及相关点,采取转移法,即设的中点坐标为,,则,再代入,可得轨迹方程3)研究直线过定点问题,一般先利用坐标表示直线方程,再利用方程恒成立问题求相应定点,解题关键为将直线方程表示为点斜式,即将y轴截距用斜率表示

试题解析:(1)由已知可得,所求椭圆方程为

2)设点的中点坐标为,

,代入上式 得

3)若直线的斜率存在,设方程为,依题意

,由

. 由已知

所以,即

所以,整理得.故直线的方程为,即.所以直线过定点().

若直线的斜率不存在,设方程为,设,由已知,得.此时方程为,显然过点().

综上,直线过定点().

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列满足,且.

1)求

2)求数列的通项公式;

3)令,求数列的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】狄利克雷函数为F(x).有下列四个命题:①此函数为偶函数,且有无数条对称轴;②此函数的值域是;③此函数为周期函数,但没有最小正周期;④存在三点,使得△ABC是等腰直角三角形,以上命题正确的是(  )

A.①②B.①③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线过点且与椭圆相交于两点.过点作直线的垂线,垂足为.证明直线轴上的定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直四棱柱的侧棱长为,底面是边长的矩形,的中点,

1)求证:平面

2)求异面直线所成的角的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线处的切线的斜率为2,求函数的单调区间;

2)若函数在区间上有零点,求实数的取值范围.是自然对数的底数,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上有最大值4,最小值1,设函数

1)求的值及函数的解析式;

2)若不等式时恒成立,求实数的取值范围;

3)如果关于的方程有三个相异的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司要在一条笔直的道路边安装路灯,要求灯柱AB与底面垂直,灯杆BC与灯柱AB所在的平面与道路走向垂直,路灯C采用锥形灯罩,射出的管线与平面ABC部分截面如图中阴影所示,路宽AD=24米,设

(1)求灯柱AB的高h(用表示);

(2)此公司应该如何设置的值才能使制作路灯灯柱AB和灯杆BC所用材料的总长度最小?最小值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A的长度均大于200米,现在边界APAQ处建围墙,在PQ处围竹篱笆.

1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?

2)已知AP段围墙高1米,AQ段围墙高1.5米,造价均为每平方米100.若围围墙用了20000元,问如何围可使竹篱笆用料最省?

查看答案和解析>>

同步练习册答案