【题目】为了解某班学生喜爱打篮球是否与性别有关,对该班40名学生进行了问卷调查,得到了如下的列联表:
男生 | 女生 | 总计 | |
喜爱打篮球 | 19 | 15 | 34 |
不喜爱打篮球 | 1 | 5 | 6 |
总计 | 20 | 20 | 40 |
(1)在女生不喜爱打篮球的5个个体中,随机抽取2人,求女生甲被选中的概率;
(2)判断能否在犯错误的概率不超过的条件下认为喜爱篮球与性别有关?
附:,其中.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | <>0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
科目:高中数学 来源: 题型:
【题目】某电视台举行一个比赛类型的娱乐节目, 两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将队第六位选手的成绩没有给出,并且告知大家队的平均分比队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得“晋级”.
(1)根据茎叶图中的数据,求出队第六位选手的成绩;
(2)主持人从队所有选手成绩中随机抽2个,求至少有一个为“晋级”的概率;
(3)主持人从两队所有选手成绩分别随机抽取2个,记抽取到“晋级”选手的总人数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),以为极点,以轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为
(1)求曲线的普通方程和直线的直角坐标方程;
(2)设点,若直线与曲线相交于,两点,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一动圆P与定圆外切,且与直线相切,记动点P的轨迹为曲线E.
(1)求曲线E的方程;
(2)过点作直线l与曲线E交于不同的两点B、C,设BC中点为Q,问:曲线E上是否存在一点A,使得恒成立?如果存在,求出点A的坐标;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是( )
A. 2012年至2016年我国新闻出版业和数字出版业营收均逐年增加
B. 2016年我国数字出版业营收超过2012年我国数字出版业营收的2倍
C. 2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍
D. 2016年我国数字出版营收占新闻出版营收的比例未超过三分之一
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为.
(1)求椭圆的方程;
(2)设圆上任意一点处的切线交椭圆于点,,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,且、).设关于的不等式的解集为,且方程的两实根为、.
(1)若,完成下列问题:
①求、的关系式;
②若、都是负整数,求的解析式;
(2)若,求证: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com