精英家教网 > 高中数学 > 题目详情

【题目】为了解某班学生喜爱打篮球是否与性别有关,对该班40名学生进行了问卷调查,得到了如下的列联表:

男生

女生

总计

喜爱打篮球

19

15

34

不喜爱打篮球

1

5

6

总计

20

20

40

1)在女生不喜爱打篮球的5个个体中,随机抽取2人,求女生甲被选中的概率;

2)判断能否在犯错误的概率不超过的条件下认为喜爱篮球与性别有关?

附:,其中

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

<>0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1;(2)不能

【解析】

1)根据随机事件概率公式,计算即可求解;

2)根据题意,计算,与比较,完成独立性检验.

(1)在女生不喜爱打篮球的5个个体中,随机抽取2人,

则女生甲被选中的概率

(2)根据题中给出的列联表,

故不能在犯错误的概率不超过0.1的条件下认为喜爱篮球与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电视台举行一个比赛类型的娱乐节目, 两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将队第六位选手的成绩没有给出,并且告知大家队的平均分比队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得“晋级”.

(1)根据茎叶图中的数据,求出队第六位选手的成绩;

(2)主持人从队所有选手成绩中随机抽2个,求至少有一个为“晋级”的概率;

(3)主持人从两队所有选手成绩分别随机抽取2个,记抽取到“晋级”选手的总人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),以为极点,以轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为

1)求曲线的普通方程和直线的直角坐标方程;

2)设点,若直线与曲线相交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一动圆P与定圆外切,且与直线相切,记动点P的轨迹为曲线E

1)求曲线E的方程;

2)过点作直线l与曲线E交于不同的两点BC,设BC中点为Q,问:曲线E上是否存在一点A,使得恒成立?如果存在,求出点A的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是( )

A. 2012年至2016年我国新闻出版业和数字出版业营收均逐年增加

B. 2016年我国数字出版业营收超过2012年我国数字出版业营收的2倍

C. 2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍

D. 2016年我国数字出版营收占新闻出版营收的比例未超过三分之一

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,圆轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为

1)求椭圆的方程;

2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当时,求不等式的解集;

2)若时,不等式恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求曲线在点处的切线方程;

2)若在定义域内为单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且.设关于的不等式的解集为,且方程的两实根为.

1)若,完成下列问题:

①求的关系式;

②若都是负整数,求的解析式;

2)若,求证: .

查看答案和解析>>

同步练习册答案